Article

QM/MM Molecular Dynamics Simulation for the MHC class I Molecule Interacting with Antigen Peptide

  • Feng Shilei ,
  • Hu Shu ,
  • Liu Bing ,
  • Liu Wei
Expand
  • College of Advanced Science and Technology, Dalian University of Technology, Dalian 116023

Received date: 2013-04-11

  Online published: 2013-06-27

Abstract

In the process of antigen presenting of major histocompatibility complex (MHC) class I molecule, antigen protein, which is in the cytoplasm of antigen-presenting cells (APC), is cleaved into short peptide fragments by proteasome, and the short peptide fragments will be transferred from the cytoplasm to the endoplasmic reticulum lumen by transporter associated with antigen processing (TAP). The peptide will combine with the MHC class I molecule, and the forming pMHC complex will be presented to the surface of APC cells, and it will be recognized by T cell receptor (TCR). And then, the CTL cells will be activated, and it will begin to proliferate and differentiate, and it will kill the tumor cells. The mechanisms how does the CTL cell recognize the peptide-MHC complex and how does the MHC molecule interact with the peptide are not clear. In traditional method, electronic structure changes is not considered during the peptide binding to the MHC molecules. The electronic structure changes need to use the method of Quantum Mechanics to deal with. In this paper, we use QM/MM multi-scale molecular dynamics simulation of biological macromolecules, and take the crystal structure of TAX-HLA- A*0201 molecules complex as template. We would replace the anchor amino acid of the peptide, and use the electric multipole moment component to present the electrostatic potential formed by the atomic polarization charge of pocket amino acid residues. We analyze the electrostatic potential changes and the functions of each pocket amino acid by box plots, we would consider that Glu63 and Lys66 of Pocket B are primary anchoring amino acids and fine recognition amino acid, Asp77 and Tyr84 of Pocket F are the fine recognition amino acid, Asp77 and Lys146 are the primary anchoring amino acids. It shows that QM/MM method is very effective in extracting the specific information of antigen peptide binding to MHC class I molecules. And it possesses some guiding significance to understand the mechanism of immune recognition and the development of tumor vaccine.

Cite this article

Feng Shilei , Hu Shu , Liu Bing , Liu Wei . QM/MM Molecular Dynamics Simulation for the MHC class I Molecule Interacting with Antigen Peptide[J]. Acta Chimica Sinica, 2013 , 71(9) : 1313 -1320 . DOI: 10.6023/A13040393

References

[1] Van der Bruggen, P.; Zhang, Y.; Chaux, P.; Stroobant, V.; Panichelli, C.; Schultz, E. S.; Chapiro, J.; vall der Eynde, B. J.; Brasseur, F.; Boon, T. Immunol. Rev. 2002, 188, 5l.
[2] Garboczi, D. N.; Ghosh, P.; Utz, U.; Fan, Q. R.; Biddison, W. E.; Wiley, D. C. Nature 1996, 384, 134.
[3] Rammensee, H.; Bachmann, J.; Emmerich, N. P. Immunogenetics 1999, 50, 213.
[4] Nielsen, M.; Lundegaard, C.; Lund, O. BMC Bioinformatics 2007, 8, 238.
[5] Honeyman, M. C.; Brusic, V.; Stone, N. L. Nat. Biotechnol. 1998, 16, 966.
[6] Hattotuwagama, C. K; Guan, P.; Docytchinova, I. A. J. Mol. Graph Modell. 2004, 22, 195.
[7] Dong, S. M.; Song, Z.; Liu, T.; Zhu, M. H.; Liu, W. Acta Chim. Sinica 2010, 68, 1821. (董素梅, 宋哲, 刘涛, 朱鸣华, 刘伟, 化学学报, 2010, 68, 1821.)
[8] Kessler, J. H.; Beekman, N. J.; Bres-Vloemans, S. A.; Berdijk, P.; van Veelen, P. A.; Kloosterman-Joosten, A. M.; Vissers, D. C; tenBosch, G. J.; Kester, M. G.; Sijts, A.; Wouter Drijfhout, J.; Ossendorp, F.; Offringa, R. Exp. Med. 2001, 193, 73.
[9] Trautwein, N.; Stevanovi?, S. Methods Mol. Biol. 2013, 960, 159.
[10] Liao, W. W.; Arthur, J. W. PLoS One 2011, 6, e25055.
[11] Lee, Y.; Ferrari, G.; Lee, S. C. Biomed. Microdevices 2010, 12, 207.
[12] Binkowski, T. A.; Marino, S. R.; Joachimiak, A. PLoS One 2012, 7, e41710.
[13] Humprey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33.
[14] Yael, A.; Hanah, M. Methods 2004, 34, 454.
[15] Song, Z.; Liu, T.; Liu, W.; Zhu, M. H.; Wang, X. G. Acta Phys.-Chim. Sin. 2007, 23, 198. (宋哲, 刘涛, 刘伟, 朱鸣华, 王晓刚, 物理化学学报, 2007, 23, 198.)
[16] Morokuma, K.; Svensson, M.; Humbel, S. J. Phys. Chem. 1996, 100, 19357.
[17] Xu, G. X.; Li, L. M.; Wang, D. M. Quantum Chemistry (Middle), Science Press, Beijing, 2009. (徐光宪, 黎乐民, 王德民, 量子化学(中册), 科学出版社, 北京, 2009.)
[18] Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. J. Am. Chem. Soc. 1996, 118, 11225.
[19] http://openmopac.net/.
[20] Dewar, M. J. S. J. Mol. Struct. 1983, 100, 41.
[21] Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701.
[22] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463.
[23] Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101.
[24] Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182.
[25] Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055.
[26] Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.
[27] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
[28] Agudelo, W. A.; Galindo, J. F.; Patarroyo, M. E. Biochem. Biophys. Res. Commun. 2011, 410, 410.
[29] Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
[30] Nicolas, R.; Ilka, H.; Ole, L.; Morten, N. Immunogenetics 2008, 60, 759.
[31] Saper, M. A.; Bjorkman, P. J.; Wiley, D. C. J. Mol. Biol. 1991, 219, 277.
[32] Lund, O.; Nielsen, M.; Kesmir, C.; Petersen, A. G.; Lundegaard, C. Immunogenetics 2004, 55, 797.
[33] http://www.cbs.dtu.dk/researchgroups/immunology/HLA/A_cont_files/Media/A0201/A0201.jpg?disposition=download.
Outlines

/