Review

Recent Progress of Li4Ti5O12 with Different Morphologies as Anode Material

  • Zhang Yonglong ,
  • Hu Xuebu ,
  • Xu Yunlan ,
  • Ding Mingliang
Expand
  • College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054

Received date: 2013-04-18

  Online published: 2013-06-27

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21206203, 21077140).

Abstract

Lithium-ion battery has developed rapidly in the past decades due to growing needs of electronic and information industries. Nowadays, the demand for lithium-ion batteries is still increasing and safety requirements are higher and higher. Therefore, exploration of a new anode material that is high safety and excellent cycle ability, as compared to commercial carbon/graphite materials, has been extensively attempted to meet the new need such as electric vehicles industry. Spinel Li4Ti5O12 as an anode material of power lithium-ion battery has become a research hotspot due to its appealing features such as "zero-strain" structure characteristic, excellent cycle stability, low cost, simple synthesis, high safety feature and flat charge-discharge voltage plateau (1.55 V vs. Li/Li+). It is also considered as one of the most promising anode material for lithium-ion battery. Despite many advantages associated with Li4Ti5O12, it can not meet the need of large-scale applications due to its pretty low electric conductivity (10-13 S·cm-1), moderate Li+ diffusion coefficient (10-9~10-13 cm2·s-1) and theoretical capacity (175 mAh·g-1). Several methods have been utilized to improve the conductivity and energy density of Li4Ti5O12, such as synthesis of nano-sized particle, ion doping, doping Li4Ti5O12 with other metals or metal oxides, coating Li4Ti5O12 with conductive carbons, nitridation on Li4Ti5O12 surface and composite anode materials prepared by Li4Ti5O12 and other anodes. In addition, unique structure has been proved as an effective way to improve the electric conductivity of the material. Moreover, morphology has also an important effect on electrochemical performances of Li4Ti5O12 such as specific capacity, specific energy, specific power, high rate performance and cycle life. This review focuses on the present status of different morphologies Li4Ti5O12 including spherical structure, porous (hollow) structure, nano-micro structure, core-shell structure, one-dimensional, two-dimensional and three-dimensional nanostructures, then summarized their advantages, resolved and unresolved problems, common synthesis methods and application areas, respectively. At last, the future development prospects of Li4Ti5O12 are presented.

Cite this article

Zhang Yonglong , Hu Xuebu , Xu Yunlan , Ding Mingliang . Recent Progress of Li4Ti5O12 with Different Morphologies as Anode Material[J]. Acta Chimica Sinica, 2013 , 71(10) : 1341 -1353 . DOI: 10.6023/A13040423

References

[1] Yang, L.; Chen, J. Z.; Tang, Y. F.; Fang, S. H. Prog. Chem. 2011, 23, 310. (杨立, 陈继章, 唐宇峰, 房少华, 化学进展, 2011, 23, 310.)
[2] Yan, H.; Zhang, H.; Zhang, D.; Zhu, Z.; Qi, L. Acta Phys.-Chim. Sin. 2011, 27, 2118. (闫慧, 张欢, 张鼎, 朱智, 其鲁, 物理化学学报, 2011, 27, 2118.)
[3] Zhang, A.; Zheng, Z. M.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Sci. China Chem. 2011, 54, 936.
[4] Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z. X.; Chen, L. Q. Adv. Mater. 2011, 23, 1385.
[5] Song, H.; Yun, S. W.; Chun, H. H.; Kim, M. G.; Chung, K. Y.; Kim, H. S.; Cho, B. W.; Kim, Y. T. Energy Environ. Sci. 2012, 5, 9903.
[6] Qiu, C. X.; Yuan, Z. Z.; Liu, L.; Cheng, S. J.; Liu, J. C. J. Inorg. Mater. 2013, 28, 727. (邱彩霞, 袁中直, 刘玲, 程思洁, 刘金成, 无机材料学报, 2013, 28, 727.)
[7] Jiang, S. M.; Zhao, B. T.; Chen, Y. B.; Cai, R.; Shao, Z. P. J. Power Sources 2013, 238, 356.
[8] Gan, L.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Peng, W. J.; Wang, J. X.; Huang, S. L.; Su, M. R. Electrochim. Acta 2013, 104, 117.
[9] Chiu, H.-C.; Brodusch, N.; Gauvin, R.; Guerfi, A.; Zaghib, K.; Demopoulos, G. P. J. Electrochem. Soc. 2013, 160, A3041.
[10] Zhang, C. M.; Zhang, Y. Y.; Wang, J.; Wang, D.; He, D. N.; Xia, Y. Y. J. Power Sources 2013, 236, 118.
[11] Fang, W.; Cheng, X. Q.; Zuo, P. J.; Ma, Y. Y.; Yin, G. Electrochim. Acta 2013, 93, 173.
[12] Wang, W.; Wang, H. L.; Wang, S. B.; Hu, Y. J.; Tian, Q. X.; Jiao, S. Q. J. Power Sources 2013, 228, 244.
[13] Lin, J. Y.; Hsu, C. C.; Ho, H. P.; Wu, S. H. Electrochim. Acta 2013, 87, 126.
[14] Bai, Y. J.; Gong, C.; Lun, N.; Qi, Y. X. J. Mater. Chem. A 2013, 1, 89.
[15] Liu, Z. M.; Zhang, N. Q.; Wang, Z. J.; Sun, K. N. J. Power Sources 2012, 205, 479.
[16] Cai, R.; Yu, X.; Liu, X. Q.; Shao, Z. P. J. Power Sources 2010, 195, 8244.
[17] Li, H. S.; Shen, L. F.; Zhang, X. G.; Wang, J.; Nie, P.; Che, Q.; Ding, B. J. Power Sources 2013, 221, 122.
[18] Fang, W.; Zuo, P. J.; Ma, Y. L.; Cheng, X. Q.; Liao, L. X.; Yin, G. P. Electrochim. Acta 2013, 94, 294.
[19] Yang, G. L.; Su, Z.; Fang, H. S.; Yao, Y. C.; Li, Y. M.; Yang, B.; Ma, W. H. Electrochim. Acta 2013, 93, 158.
[20] Zhu, G. N.; Chen, L.; Wang, Y. G.; Wang, C. X.; Che, R. C.; Xia, Y. Y. Adv. Funct. Mater. 2013, 23, 640.
[21] Liu, G. Y.; Wang, H. Y.; Liu, G. Q.; Yang, Z. Z.; Jin, B.; Jiang, Q. C. Electrochim. Acta 2013, 87, 218.
[22] Rai, A. K.; Gim, J.; Kang, S. W.; Mathew, V.; Anh, L. T.; Kang, J.; Song, J.; Paul, B. J.; Kim, J. Mater. Chem. Phys. 2012, 136, 1044.
[23] Gao, J.; Jiang, C. Y.; Wan, C. R. J. Electrochem. Soc. 2010, 157, K39.
[24] Li, J.; Zhou, Y.; Jin, S. D.; Zheng, Y. Y. Mater. Rev. A 2011, 25, 51. (李军, 周燕, 靳世东, 郑育英, 材料导报A, 2011, 25, 51.)
[25] He, Z. J.; Wang, Z. X.; Wu, F. X.; Guo, H. J.; Li, X. H.; Xiong, X. H. J. Alloys Compd. 2012, 540, 39.
[26] Wu, F. X.; Wang, Z. X.; Li, X. H.; Guo, H. J.; Yue, P.; Xiong, X. H.; He, Z. J.; Zhang, Q. Electrochim. Acta 2012, 78, 331.
[27] Kadoma, Y.; Chiba, Y.; Yoshikawa, D.; Mitobe, Y.; Kumagai, N.; Ui, K. Electrochemistry 2012, 80, 759.
[28] Zhao, Y. Y.; Pang, S. P.; Zhang, C. J.; Zhang, Q. H.; Gu, L.; Zhou, X. H.; Li, G. C.; Cui, G. L. J. Solid State Electrochem. 2013, 17, 1479.
[29] Jung, H. G.; Venugopal, N.; Scrosati, B.; Sun, Y. K. J. Power Sources 2013, 221, 266.
[30] Yan, H.; Zhu, Z.; Zhang, D.; Li, W.; Qi, L. J. Power Sources 2012, 219, 45.
[31] Zhang, Z. W.; Cao, L. Y.; Huang, J. F.; Wang, D. Q.; Wu, J. P.; Cai, Y. J. Ceram. Int. 2013, 39, 2695.
[32] Li, C. C.; Li, Q. H.; Chen, L. B.; Wang, T. H. ACS Appl. Mater. Interfaces 2012, 4, 1233.
[33] Wang, J.; Cheng, X. L.; Wang, Z. G.; Yang, H. J. Inorg. Mater. 2010, 25, 235. (王瑾, 成雪莲, 王子港, 杨晖, 无机材料学报, 2010, 25, 235.)
[34] Gao, J.; Jiang, C. Y.; Ying, J. R.; Wan, C. R. J. Power Sources 2006, 155, 364.
[35] Allen, J. L.; Jow, T. R.; Wolfenstine, J. J. Power Sources 2006, 159, 1340.
[36] Lai, C.; Wu, Z. Z.; Zhu, Y. X.; Wu, Q. D.; Li, L.; Wang, C. J. Power Sources 2013, 226, 71.
[37] Gao, J.; Mu, X.; Li, J. J.; He, X. M.; Jiang, C. Y. J. Inorg. Mater. 2012, 27, 253. (高剑, 穆鑫, 李建军, 何向明, 姜长印, 无机材料学报, 2012, 27, 253.)
[38] Guan, X. F.; Chen, X. M.; Li, G. S. P.; Zang, Y.; Lin, H. F.; Luo, D.; Li, L. P. RSC Adv. 2013, 3, 3088.
[39] Lin, Y. S.; Duh, J. G.; Tsai, M. C.; Lee, C. Y. Electrochim. Acta 2012, 83, 47.
[40] Feckl, J. M.; Fominykh, K.; Döblinger, M.; Fattakhova-Rohlfing, D.; Bein, T. Angew. Chem. Int. Ed. 2012, 51, 7459.
[41] Kang, E.; Jung, Y. S.; Kim, G. H.; Chun, J.; Wiesner, U.; Dillon, A. C.; Kim, J. K.; Lee, J. Adv. Funct. Mater. 2011, 21, 4349.
[42] Yu, L.; Wu, B. H.; Lou, X. W. Adv. Mater. 2013, 25, 2296.
[43] He, N. D.; Wang, B. S.; Huang, J. J. J. Solid State Electrochem. 2010, 14, 1241.
[44] Yang, K. M.; Hong, Y. J.; Choi, S. H.; Park, B. K.; Kang, Y. C. Int. J. Electrochem. Sci. 2013, 8, 1026.
[45] Han, S. Y.; Kim, I. Y.; Lee, S. H.; Hwang, S. J. Electrochim. Acta 2012, 74, 59.
[46] Choi, H. S.; Im, J. H.; Kim, T.; Park, J. H.; Park, C. R. J. Mater. Chem. 2012, 22, 16986.
[47] Lee, S. C.; Lee, S. M.; Lee, J. W.; Lee, J. B.; Lee, S. M.; Han, S. S.; Lee, H. C.; Kim, H. J. J. Phys. Chem. C 2009, 113, 18420.
[48] Xi, K.; Li, Y. Rare Metal Mater. Eng. 2010, 39, 2051. (郗凯, 李颖, 稀有金属材料与工程, 2010, 39, 2051.)
[49] Li, Y.; Pan, G. L.; Liu, J. W.; Gao, X. P. J. Electrochem. Soc. 2009, 156, A495.
[50] Wang, L.; Xiao, Q. Z.; Li, Z. H.; Lei, G. T.; Zhang, P.; Wu, L. J. J. Solid State Electrochem. 2012, 16, 3307.
[51] Jo, M. R.; Jung, Y. S.; Kang, Y. M. Nanoscale 2012, 4, 6870.
[52] Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Adv. Mater. 2012, 24, 6502.
[53] Wang, Y. F.; Tang, Y. F.; Qiu, Z.; Yang, L. Electrochemistry 2010, 16, 46. (王怡菲, 唐宇峰, 仇征, 杨立, 电化学, 2010, 16, 46.)
[54] Tang, Y. F.; Yang, L.; Fang, S. H.; Qiu, Z. Electrochim. Acta 2009, 54, 6244.
[55] Li, N.; Mei, T.; Zhu, Y. C.; Wang, L. L.; Liang, J. W.; Zhang, X.; Qian, Y. T.; Tang, K. B. CrystEngComm 2012, 14, 6435.
[56] Han, S. Y.; Kim, I. Y.; Hwang, S. J. J. Phys. Chem. Solids 2012, 73, 1444.
[57] Choi, H. S.; Kim, T. H.; Im, J. H.; Park, C. R. Nanotechnology 2011, 22, 405402.
[58] Deng, J. Q.; Lu, Z. G.; Belharouak, I.; Amine, K.; Chung, C. Y. J. Power Sources 2009, 193, 816.
[59] Kim, K.; Toujigamori, T.; Suzuki, K.; Taminato, S.; Tamura, K.; Mizuki, J. I.; Hirayama, M.; Kanno, R. Electrochemistry 2012, 80, 800.
[60] Mosa, J.; Vélez, J. F.; Lorite, I.; Arconada, N.; Aparicio, M. J. Power Sources 2012, 205, 491.
[61] Wu, X. M.; Liu, J. L.; Chen, S.; Mai, F. R.; Li, C. A. J. Solid State Electrochem. 2012, 16, 3855.
[62] Mani, J.; Katzke, H.; Habouti, S.; Moonoosawmy, K. R.; Dietze, M.; Es-Souni, M. J. Mater. Chem. 2012, 22, 6632.
[63] Woo, S. W.; Dokko, K.; Kanamura, K. Electrochim. Acta 2007, 53, 79.
[64] Sorensen, E. M.; Barry, S. J.; Jung, H. K.; Rondinelli, J. R.; Vaughey, J. T.; Poeppelmeier, K. R. Chem. Mater. 2006, 18, 482.
[65] Choi, D. I.; Lee, H.; Lee, D. J.; Nam, K. W.; Kim, J. S.; Huggins, R. A.; Park, J. K.; Choi, J. W. J. Mater. Chem. A 2013, 1, 5320.
[66] Izumi, A.; Sanada, M.; Furuichi, K.; Teraki, K.; Matsuda, T.; Hiramatsu, K.; Munakata, H.; Kanamura, K. Electrochim. Acta 2012, 79, 218.
[67] Zhang, B.; Liu, Y. S.; Huang, Z. D.; Oh, S.; Yu, Y.; Mai, Y. W.; Kim, J. K. J. Mater. Chem. 2012, 22, 12133.
[68] Fang, W.; Ma, Y. L.; Zuo, P. J.; Cheng, X. Q.; Yin, G. P. Int. J. Electrochem. Sci. 2013, 8, 1949.
[69] Tang, Y. F.; Yang, L.; Qiu, Z.; Huang, J. H. J. Mater. Chem. 2009, 19, 5980.
[70] Zhu, G. N.; Liu, H. J.; Zhuang, J. H.; Wang, C. X.; Wang, Y. G.; Xia, Y. Y. Energy Environ. Sci. 2011, 4, 4016.
[71] Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Chen, L.; Li, H. S. J. Mater. Chem. 2011, 21, 14414.
[72] Jung, H. G.; Myung, S. T.; Yoon, C. S.; Son, S. B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. K. Energy Environ. Sci. 2011, 4, 1345.
[73] Zhang, Q.; Huang, J. Q.; Qian, W. Z.; Zhang, Y. Y.; Wei, F. Small 2013, 9, 1237.
[74] Bindumadhavan, K.; Srivastava, S. K.; Mahanty, S. Chem. Commun. 2013, 49, 1823.
[75] Shu, J.; Hou, L.; Ma, R.; Shui, M.; Shao, L. Y.; Wang, D. J.; Ren, Y. L.; Zheng, W. D. RSC Adv. 2012, 2, 10306.
[76] Chen, X. M.; Guan, X. F.; Li, L. P.; Li, G. S. J. Power Sources 2012, 210, 297.
[77] Amine, K.; Belharouak, I.; Chen, Z. H.; Tran, T.; Yumoto, H.; Ota, N.; Myung, S. T.; Sun, Y. K. Adv. Mater. 2010, 22, 3052.
[78] Chen, J. Z.; Yang, L.; Fang, S. H.; Tang, Y. F. Electrochim. Acta 2010, 55, 6596.
[79] Milica, V.; Stojkovic, I.; Mitric, M.; Mentus, S.; Cvjeticanin, N. Mater. Res. Bull. 2013, 48, 218.
[80] Liu, J.; Li, X. F.; Cai, M.; Li, R. Y.; Sun, X. L. Electrochim. Acta 2013, 93, 195.
[81] Shen, L. F.; Li, H. S.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Nano Lett. 2012, 12, 5673.
[82] Nugroho, A.; Chang, W.; Kim, S. J.; Chung, K. Y.; Kim, J. RSC Adv. 2012, 2, 10805.
[83] Choi, J.; Lee, S.; Ha, J.; Song, T.; Paik, U. Nanoscale 2013, 5, 3230.
[84] Wang, J.; Zhao, H. L.; Yang, Q.; Wang, C. M.; Lv, P. P.; Xia, Q. J. Power Sources 2013, 222, 196.
[85] Lee, M. L.; Liao, S. C.; Chen, J. M.; Yeh, J. W.; Shih, H. C. J. Chin. Chem. Soc. 2012, 59, 1206.
[86] Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Zhang, F. J. Mater. Chem. 2011, 21, 761.
[87] Zhou, X. S.; Wan, L. J.; Guo, Y. G. Adv. Mater. 2013, 25, 2152.
[88] Xiong, L. Z.; He, Z. Q.; Yin, Z. L.; Chen, Q. Y. Trans. Nonferrous Met. Soc. China 2010, 20, s267.
[89] Ji, G.; Ma, Y.; Ding, B.; Lee, J. Y. Chem. Mater. 2012, 24, 3329.
[90] He, Y. B.; Li, B. H.; Liu, M.; Zhang, C.; Li, J.; Du, H. D.; Zhang, B.; Yang, Q. H.; Kim, J. K.; Kang, F. Y. Sci. Rep. 2012, 2, 913.
Outlines

/