Fabrication and Lithium-Storage Performances of Graphene-Wrapped Cu2+1O/Cu Composites
Received date: 2013-03-17
Online published: 2013-07-19
Supported by
Project supported by the Fund from Natural Science Foundation of China for Innovative Research Group (Grant 51221462), the Jiangsu Ordinary University Graduate Innovative Research Programs (No. CXZZ12_0943) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Materials with hybrid metal-semiconductor nanostructures, such as graphene-metal oxides and carbon nanotube-metal oxides, have been intensively exploited as electrode material for lithium ion batteries in recent years. It was found that the structures and properties of the metal-semiconductor herterojunction and the energy level structures of the semiconductor are essential for the conductance of the metal-semiconductor composite. It is thence believed that the conductance, and thus the lithium-storage performance, of the metal-semiconductor composite can be improved by tuning the structures of the metal-semiconductor herterojunction and the energy level structures of the semiconductor. Metal excess defects can occured in metal oxide crystals due to the anion are absent from their its lattice sites or the presence of an extra cations at in an interstitial sites. In the metal excess type metal oxide, the electric transport is mainly by "excess" electrons which are present for maintaining the electrical neutrality, and thus possesses a higher conductance. In this work, graphene-wrapped Cu2+1O/Cu composites were successfully fabricated by using a hydrothermal reaction followed by an in situ thermal reduction. The structures, surface morphologies and the lithium-storage performances of the obtained materials were characterized and investigated by scanning electron microscopy, X-ray diffraction and galvanostatic discharge-charge techniques. In the obtained hybrid material, highly-crystallized Cu2+1O (Cu2O with metal excess defects) successfully formed during the heat treatment processes, Cu2+1O and Cu particles were homogeneously wrapped by flexible graphene sheets with a well defined core-shell structure. Constant current charge-discharge results showed that graphene-wrapped Cu2+1O/Cu composite had a higher reversible capacity and excellent cycling stability, delivered a higher initial charge-discharge capacity of 773 and 438 mA•h•g-1 at 50 mA•g-1 and superb cycling performance of 368 mA•h•g-1 after 60 cycles, as well as a favorable rate capabilities and high rate cycling performances, indicating the high conductance and the optimized herterojunctions were achieved by the simultaneously introduction of metal excess defects, metallic copper and graphene in graphene-wrapped Cu2+1O/Cu composites.
Tian Leilei , Wei Xianyong , Zhuang Quanchao , Zong Zhimin , Sun Shigang . Fabrication and Lithium-Storage Performances of Graphene-Wrapped Cu2+1O/Cu Composites[J]. Acta Chimica Sinica, 2013 , 71(9) : 1270 -1274 . DOI: 10.6023/A13030293
[1] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[2] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nature 2000, 407, 496.
[3] Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Song, W. G.; Wan, L. J.; Guo, Y. G. Chem. Mater. 2008, 20, 3617.
[4] Wang, B.; Wu, X. L.; Shu, C. Y.; Guo, Y. G.; Wang, C. R. J. Mater. Chem. 2010, 20, 10661.
[5] Zhao, B.; Liu, P.; Zhuang, H.; Jiao, Z.; Fang, T.; Xu, W.; Lu, B.; Jiang, Y. J. Mater. Chem. A 2013, 1, 367.
[6] Zhang, Z.; Chen, H.; Che, H.; Wang, Y.; Su, F. Mater. Chem. Phys. 2013, 138, 593.
[7] Venkatachalam, S.; Zhu, H.; Masarapu, C.; Hung, K.; Liu, Z.; Suenaga, K.; Wei, B. ACS Nano 2009, 3, 2177.
[8] Xiang, J. Y.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Zhou, Y.; Zhang, L. Electrochem. Commun. 2009, 11, 262.
[9] Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803.
[10] Xiang, J. Y.; Tu, J. P.; Huang, X. H.; Yang, Y. Z. J. Solid State Electrochem. 2008, 12, 941.
[11] Zhang, Y.; Wang, X.; Zeng, L.; Song, S.; Liu, D. Dalton Trans. 2012, 41, 4316.
[12] Xiang, J. Y.; Wang, X. L.; Xia, X. H.; Zhang, L.; Zhou, Y.; Shi, S. J.; Tu, J. P. Electrochim. Acta 2010, 55, 4921.
[13] Ma, L.; Yu, Y.; Huang, W. Y.; Zhu, L. P.; Li, J. L.; Zhuang, Y. Y.; Qi, X. H. Acta Chim. Sinica 2005, 63, 1641. (马丽丽, 余颖, 黄文娅, 朱路平, 李家麟, 庄源益, 漆新华, 化学学报, 2005, 63, 1641.)
[14] Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867.
[15] Zhou, B.; Liu, Z. G.; Wang, H. X.; Huang, X. Q.; Sui, Y.; Wang, X. J.; Lv, Z.; Su, W. H. Acta Phys.-Chim. Sin. 2009, 25, 1841. (周波, 刘志国, 王红霞, 黄喜强, 隋郁, 王先杰, 吕喆, 苏文辉, 物理化学学报, 2009, 25, 1841.)
[16] Xu, C.; Han, Y.; Chi, M. Prog. Chem. 2010, 22, 2290. (徐晨洪, 韩优, 迟名扬, 化学进展, 2010, 22, 2290.)
[17] Pang, H.; Gao, F.; Lu, Q. Chem. Commun. 2009, (9), 1076.
[18] Feng, L.; Zhang, C.; Gao, G.; Cui, D. Nanoscale Res. Lett. 2012, 7, 276.
[19] Wang, X.; Hanson, J. C.; Frenkel, A. I.; Kim, J. Y.; Rodriguez, J. A. J. Phys. Chem. B 2004, 108, 13667.
[20] Xu, F.; Zha, Y.; Wang, G.; Wang, Y.; Li, J. Acta Chim. Sinica 2009, 67, 957. (徐芬, 查玉平, 王国秀, 王艳, 李家麟, 化学学报, 2009, 67, 957.)
[21] Sun, D.; Yin, P. G.; Guo, L. Acta Phys.-Chim. Sin. 2011, 27, 1543. (孙都, 殷鹏刚, 郭林, 物理化学学报, 2011, 27, 1543.)
[22] Shang, T. M.; Guan, M. Y.; Sun, J. H.; Zhou, Q. F.; Xu, Z. Chinese J. Inorg. Chem. 2010, 26, 1294.
[23] Jing, A. H.; Shi, X.; Dong, J.; Qian, W. P. Acta Chim. Sinica 2007, 65, 1995 (景爱华, 施萱, 董健, 钱卫平, 化学学报, 2007, 65, 1995.)
[24] Cui, Y.; Hao, Y.; Bao, W.; Shi, Y.; Zhuang, Q.; Qiang, Y. J. Electrochem. Soc. 2013, 160, A53.
[25] Shi, Y. L.; Shen, M. F.; Xu, S. D.; Zhuang, Q. C.; Jiang, L.; Qiang, Y. H. Solid State Ionics 2012, 222-223, 23.
[26] Shi, Y. L.; Shen, M. F.; Xu, S. D.; Qiu, X. Y.; Jiang, L.; Zhuang, Q. C. Int. J. Electrochem. Sci. 2011, 6, 3399.
[27] Tian, L.; Zhuang, Q.; Li, J.; Wu, C.; Shi, Y.; Sun, S. Electrochim. Acta 2012, 65, 153.
[28] Tian, L. L.; Zhuang, Q. C.; Li, J.; Shi, Y. L.; Chen, J. P.; Lu, F.; Sun, S. G. Chin. Sci. Bull. 2011, 56, 3204.
[29] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
[30] Li, C. Y.; Liu, S. X.; Ma, Y. Acta Phys.-Chim. Sin. 2009, 25, 1555 (李长玉, 刘守新, 马跃, 物理化学学报, 2009, 25, 1555.)
[31] Tian, L. L.; Zhuang, Q. C.; Wang, R.; Cui, Y. L.; Fang, L.; Qiang, Y. H. Chem. J. Chin. Univ. 2010, 31, 2468 (田雷雷, 庄全超, 王蓉, 崔永丽, 方亮, 强颖怀, 高等学校化学学报, 2010, 31, 2468.)
[32] Zhou, W.; Zhu, J.; Cheng, C.; Liu, J.; Yang, H.; Cong, C.; Guan, C.; Jia, X.; Fan, H. J.; Yan, Q.; Li, C. M.; Yu, T. Energy Environ. Sci. 2011, 4, 4954.
/
〈 |
|
〉 |