Article

Enantioselective Hydrogenation of α,β-Unsaturated Carboxylic Acids:Effects of Palladium Particle Size and Support Acidic Property

  • Chen Chunhui ,
  • Zhan Ensheng ,
  • Li Yong ,
  • Shen Wenjie
Expand
  • State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023

Received date: 2013-07-12

  Online published: 2013-09-13

Supported by

Project supported by the National Natural Science Foundation of China (No. 20921092).

Abstract

Effects of Pd particle size and support acidity on enantioselective hydrogenation of α,β-unsaturated carboxylic acids were systematically studied using Pd nanoparticles with different size immobilized on various oxides. Small Pd particles showed higher activity in the hydrogenation of (E)-2-methyl-2-pentenoic acid due to the larger fraction of edge sites which were more active in olefin hydrogenation; but they did not change the reaction mechanism and/or the adsorption mode of reaction intermediates. Similar correlations in the hydrogenation of (E)-2-methyl-2-butenoic acid and 2-acetamidoacrylic acid further confirmed that the size of Pd particles only mediated the activity but did not alter the enantioselectivity. On the other hand, the activity and the enantioselectivity were strongly dependent on the acidity of the support. The TOF and the ee value followed the order TiO2 > γ-Al2O3 > SiO2 > CeO2, suggesting that the acidic support favored the adsorption of the reaction intermediates.

Cite this article

Chen Chunhui , Zhan Ensheng , Li Yong , Shen Wenjie . Enantioselective Hydrogenation of α,β-Unsaturated Carboxylic Acids:Effects of Palladium Particle Size and Support Acidic Property[J]. Acta Chimica Sinica, 2013 , 71(11) : 1505 -1510 . DOI: 10.6023/A13070728

References

[1] Yu, Z. K.; Jin, W. W.; Jiang, Q. B. Angew. Chem., Int. Ed. 2012, 51, 6060.

[2] Xie, J. H.; Zhou, Q. L. Acta Chim. Sinica 2012, 70, 1427. (谢建华, 周其林, 化学学报, 2012, 70, 1472.)

[3] Ma, X.; Li, W. F.; Fan, W. Z.; Tao, X. M.; Li, X. M.; Yao, Y.; Zhu, L. F.; Chen, H. H.; Xie, X. M.; Zhang, Z. G. Chin. J. Org. Chem. 2012, 32, 1353. (马欣, 李万方, 范为正, 陶晓明, 李晓明, 姚莹, 诸吕锋, 陈厚和, 谢小敏, 张兆国, 有机化学, 2012, 32, 1353.)

[4] Chen, Q. A.; Ye, Z. S.; Duan, Y.; Zhou, Y. G. Chem. Soc. Rev. 2013, 42, 497

[5] Irfan, M.; Glasnov, T. N.; Kappe, C. O. Chemsuschem. 2011, 4, 300.

[6] Izumi, Y.; Imaida, M.; Fukawa, H.; Akabori, S. Bull. Chem. Soc. Jpn. 1963, 36, 21.

[7] Orito, Y.; Imai, S.; Niwa, S. J. Chem. Soc. Jpn. 1979, 1118.

[8] Xiong, W.; Huang, Y. L.; Ma, H. X.; Chen, H.; Li, Y. Z.; Li, L. L.; Cheng, P. M.; Li, X. J. Acta Chim. Sinica 2003, 61, 922. (熊伟, 黄裕林, 马红霞, 陈华, 黎耀忠, 李蕾蕾, 程溥明, 李贤均, 化学学报, 2003, 61, 922.)

[9] Xiong, W.; Huang, Y. Y.; Chen, H.; Li, X. J. Acta Chim. Sinica 2005, 63, 1927. (熊伟, 黄艳轶, 陈华, 李贤均, 化学学报, 2005, 63, 1927.)

[10] Mallat, T.; Orglmeister, E.; Baiker, A. Chem. Rev. 2007, 107, 4863.

[11] Jiang, H. Y.; Chen, H. Acta Chim. Sinica 2012, 70, 297. (蒋和雁, 陈华, 化学学报, 2012, 70, 297.)

[12] Nitta, Y. J. Syn. Org. Chem. Jpn. 2006, 64, 827.

[13] Tungler, A.; Sipos, E.; Hada, V. Curr. Org. Chem. 2006, 10, 1569.

[14] Fujihara, H.; Tamura, M. J. Am. Chem. Soc. 2003, 125, 15742.

[15] Jansat, S.; Gómez, M.; Philippot, K.; Muller, G.; Guiu, E.; Claver, C.; Castillón, S.; Chaudret, B. J. Am. Chem. Soc. 2004, 126, 1592.

[16] Sawai, K.; Tatumi, R.; Nakahodo, T.; Fujihara, H. Angew. Chem., Int. Ed. 2008, 47, 6917.

[17] Ranganath, K. V. S.; Kloesges, J.; Schäfer, A. H.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 7786.

[18] Nitta, Y.; Watanabe, J.; Okuyama, T.; Sugimura, T. J. Catal. 2005, 236, 164.

[19] Szöllösi, G.; Hermán, B.; Felföldi, K.; Fülöp, F.; Bartók, M. Adv. Synth. Catal. 2008, 350, 2804.

[20] Szöllösi, G.; Hermán, B.; Szabados, E.; Fülöp, F.; Bartók, M. J. Mol. Catal. A: Chem. 2010, 333, 28.

[21] Kun, I.; Török, B.; Felföldi, K.; Bartók, M. Appl. Catal. A: Gen. 2000, 203, 71.

[22] Bisignani, R.; Franceschini, S.; Piccolo, O.; Vaccari, A. J. Mol. Catal. A: Chem. 2005, 232, 161.

[23] Casagrande, A.; Franceschini, S.; Lenarda, M.; Piccolo, O.; Vaccari, A. J. Mol. Catal. A: Chem. 2006, 246, 263.

[24] György, S.; Zsolt, M.; Mihály, B. React. Kinet. Catal. Lett. 2009, 96, 319.

[25] Makra, Z.; Szöllösi, G.; Bartók, M. Catal. Today 2012, 181, 56.

[26] Borszeky, K.; Mallat, T.; Baiker, A. Catal. Lett. 1999, 59, 95.

[27] Solladié-Cavallo, A.; Hoernel, F.; Schmitt, M.; Garin, F. J. Mol. Catal. A: Chem. 2003, 195, 181.

[28] Toebes, M. L.; van Dillen, J. A.; de Jong, Y. P. J. Mol. Catal. A: Chem. 2001, 173, 75.

[29] Nitta, Y.; Kubota, T.; Okamoto, Y. Bull. Chem. Soc. Jpn. 2001, 74, 2161.

[30] Nitta, Y.; Kubota, T.; Okamoto, Y. J. Mol. Catal. A: Chem. 2004, 212, 155.

[31] Kubota, T.; Kubota, H.; Kubota, T.; Moriyasu, E.; Uchida, T.; Nitta, Y.; Sugimura, T.; Okamoto, Y. Catal. Lett. 2009, 129, 387.

[32] Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem., Int. Ed. 2009, 48, 60.

[33] Xiao, C.; Ding, H.; Shen, C.; Yang, T.; Hui, C.; Gao, H. J. J. Phys. Chem. C 2009, 113, 13466.

[34] Jin, M.; Liu, H.; Zhang, H.; Xie, Z.; Liu, J.; Xia, Y. Nano Res. 2011, 4, 83.

[35] Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857.

[36] Ma, R.; Semagina, N. J. Phys. Chem. C 2010, 114, 15417.

[37] Crespo-Quesada, M.; Yarulin, A.; Jin, M.; Xia, Y.; Kiwi-Minsker, L. J. Am. Chem. Soc. 2011, 133, 12787.

[38] Belelli, P. G.; Ferullo, R. M.; Castellani, N. J. Surf. Sci. 2010, 604, 386.

[39] Bürgi, T.; Baiker, A. Acc. Chem. Res. 2004, 37, 909.

[40] Hoxha, F.; van Vegten, N.; Urakawa, A.; Krurneich, F.; Mallat, T.; Baiker, A. J. Catal. 2009, 261, 224.

Outlines

/