Preparation and Properties of Supramolecular Aggregation of Dual-Sensitive Cyclodextrins
Received date: 2013-07-15
Online published: 2013-08-30
Supported by
Project supported by the National Natural Science Foundation of China (No. 21004029) and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application (Soochow University, No. KJS1141).
Polymer inclusion complexes with supramolecular structures formed between various polymers and cyclodextrins (CDs) have been attracted increasing attention. The stimuli-responsive supramolecules including pH, temperature, light, and magnetic fields as "smart" soft materials have been found promising in bioapplications, because they could respond environmental changes and self-induce structural transformations. Thus, to design and achieve responsive supramolecule is of significance not only to scientific research but also to potential applications. In this report, light and temperature dual-sensitive supramolecules were prepared by host-guest interaction between light-sensitive cyclodextrin derivatives and temperature-sensitive polymers. Light-sensitive 4-hydroxycinnamic acid modified β-cyclodextrin (4HCA-CD) was prepared firstly as host compound. Then, two adamantanes (ADs) terminated temperature-sensitive AD-poly(N-isopropyl-acrylamide)-AD polymer (AD-PNIPAM-AD) was prepared by reversible addition fragmentation chain transfer polymerization (RAFT) using two ADs terminated compound as chain transfer agent. The structures of 4HCA-CD and AD-PNIPAM-AD were confirmed by FT-IR and 1H NMR spectra. Molecular weight and its distribution of AD-PNIPAM-AD were determined by GPC. The 4HCA-CD/AD-PNIPAM-AD complex was prepared by mixing 4HCA-CD and AD-PNIPAM-AD, and was confirmed by 2D NMR spectrum and GPC. With UV irradiation, the absorbance of cinnamate group at 290 nm by ultraviolet visible spectrophotometer (UV-vis) spectra reduced, and the molecular weight of the complex increased about twice. These results suggested that the 4HCA-CD/AD-PNIPAM-AD complex had light-sensitivity. Moreover, the complex showed thermo-sensitivity, and the lower critical solution temperature (LCST) of the obtained host-guest inclusion complexation was 34 ℃. Up to LCST, the complex solution produced floccules. Below to LCST, the floccules disappeared and homogeneous solution recovered. The 4HCA-CD/AD-PNIPAM-AD complex could self-assemble into supramolecular aggregation by adding additional water into the complex solution in DMF. Interestingly, the size of the formed aggregation reduced after increasing the temperature up to LCST, possibly due to hydrophilic and hydrophobic transformation and re-assembly of the aggregations. Furthermore, the size could be recycled to the original size by decreasing temperature lower than LCST.
Kong Rui , Shi Dongjian , Liu Rongjin , Wu Chao , Ni Peihong , Chen Mingqing . Preparation and Properties of Supramolecular Aggregation of Dual-Sensitive Cyclodextrins[J]. Acta Chimica Sinica, 2013 , 71(11) : 1540 -1546 . DOI: 10.6023/A13070742
[1] Szejtli, J. Chem. Rev. 1998, 98, 1743.
[2] Wang, J.; Jiang, M. J. Am. Chem. Soc. 2006, 128, 3703.
[3] Manakker, F.; Vermonden, T.; Nostrum, C. F.; Hennink, W. E. Biomacromolecules 2009, 10, 3157.
[4] Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042.
[5] Zheng, B.; Wang, F.; Dong, S.; Huang, F. Chem. Soc. Rev. 2012, 41, 1621.
[6] Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Acc. Chem. Res. 2012, 45, 1294.
[7] Zhou, D. X.; Sun, T.; Deng, W. Chin. J. Org. Chem. 2012, 32, 239. (周冬香, 孙涛, 邓维, 有机化学, 2012, 32, 239.)
[8] Messner, M.; Kurkov, S. V.; Jansook, P.; Loftsson, T. Int. J. Pharm. 2010, 387, 199.
[9] Yamada, M.; Hashimato, K. Biomacromolecules 2008, 9, 3341.
[10] Chen, G. S.; Jiang, M. Chem. Soc. Rev. 2011, 40, 2254.
[11] Li, S. J.; Zhang, X. J.; Liang, H. Y.; Wang, X. R. Acta Chim. Sinica 2012, 70, 1013. (李姝静, 张小军, 梁海燕, 王心蕊, 化学学报, 2012, 70, 1013.)
[12] Han, C.; Xu, Z.; Diao, C. H.; Chen, X.; Liu, J.; Guo, M. J.; Fan, Z. Acta Chim. Sinica 2013, 71, 439. (韩聪, 徐喆, 刁春华, 陈鑫, 刘靖, 郭敏杰, 樊志, 化学学报, 2013, 71, 439.)
[13] Kiasat, A. R.; Zarinderakht, N.; Sayyahi, S. Chin. J. Chem. 2012, 30, 699.
[14] Wang, Y. Q.; Zhao, Y. C.; Han, B. H. Chin. J. Chem. 2013, 31, 657.
[15] Ren, S. D.; Chen, D. Y.; Jiang, M. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4267.
[16] Zhang, Z. X.; Liu, K. L.; Li, J. Macromolecules 2011, 44, 1182.
[17] Liu, J. H.; Chen, G. S.; Guo, M. Y.; Jiang, M. Macromolecules 2010, 43, 8086.
[18] Liao, X. J.; Chen, G. S.; Liu, X. X.; Jiang, M. Angew. Chem. Int. Ed. 2010, 49, 4409.
[19] Lendlein, A.; Jiang, H.; Junger, O.; Langer, R. Nature 2005, 434, 879.
[20] Jiang, J. Q.; Qi, B.; Lepage, M.; Zhao, Y. Macromolecules 2007, 40, 790.
[21] Shi, D. J.; Kaneko, T.; Akashi, M. Langmuir 2007, 23, 3485.
[22] Kaneko, T.; Kaneko, D.; Wang, S. Q. Plant Biotech. 2010, 27, 243.
[23] Thi, T. H.; Matsusaki, M.; Akashi, M. Biomacromolecules 2009, 10, 766.
[24] Thi, T. H.; Matsusaki, M.; Akashi, M. Chem. Commum. 2008, 3918.
[25] Jiang, J. Q.; Chen, X.; Yin, M.; Wang, Z. P.; Liu, X. Y.; Chen, M. Q. Acta Chim. Sinica 2012, 70, 525. (江金强, 陈欣, 殷明, 王周平, 刘晓亚, 陈明清, 化学学报, 2012, 70, 525.)
[26] Lai, J. T.; Filla, D.; She, R. Macromolecules 2002, 35, 6754.
[27] Shi, D. J.; Matsusaki, M.; Kaneko, T.; Akashi, M. Macromolecules 2008, 41, 8167.
[28] Thi, T. H.; Matsusaki, M.; Akashi, M. Langmuir 2009, 25, 10567.
[29] Jiang, C. Y.; Qian, W. P. Prog. Chem. 2010, 22, 1626. (蒋彩云, 钱卫平, 化学进展, 2010, 22, 1626.)
/
| 〈 |
|
〉 |