Some Problems of Nanomaterials in Bioanalytical Applications
Received date: 2013-08-29
Online published: 2013-09-10
Supported by
Project supported by the National Natural Science Foundation of China (No. 21321003), the 973 Program (2011CB935800, and 2010CB933502) and the Chinese Academy of Sciences.
By taking the three commonly used CdTe quantum dots (CdTe QDs), Au nanoparticles (Au NPs) and carbon nanodots (C-dots) as example, we have demonstrated and summarized some noteworthy problems of nanomaterials in bioanalytical applications. These problems mainly include the toxicity, microscopic heterogeneity and environmental susceptivity of nanomaterials, which had been separately discussed with different depths but unfortunately are often overlooked in practice. In the present work, a parallel comparative investigation was first made on cytotoxicity, which reveals that CdTe QDs can lead to the decrease of cell metabolic activity, cell shrinkage, and even cell death; Au NPs at a higher concentration (30 μg/mL) decrease the metabolic activity of cells to a small extent; C-dots exert no obvious toxicity to live cells, showing good biocompatibility. These studies indicate that the relative toxicity of the three nanomaterials in their bare forms is CdTe QDs>>AuNPs>C-dots, which is further supported by the inhibition experiment on the growth of green gram sprouts. Second, the microscopic heterogeneity of nanomaterials was compared with that of resorufin (a small molecular fluorescent dye) by cell imaging experiments, which clearly shows that the distribution of nanomaterials in cells is much less uniform than that of small molecular probes. Besides, the heterogeneity of both size distribution and surface modification/property of nanomaterials is also unavoidable. Third, the environmental susceptivity of nanomaterials was studied, and the results showed that spectroscopic properties of the above three nanomaterials are all sensitive to the pH change of solution. Moreover, AuNPs are also rather susceptible to the ionic strength of solution. The above three problems should arouse high attention of researchers in some bioanalyses. In addition, the measures that we suggested in the paper may be helpful to solve these problems to some extent.
Song Yanchao , Liu Junxiu , Zhang Yangyang , Shi Wen , Ma Huimin . Some Problems of Nanomaterials in Bioanalytical Applications[J]. Acta Chimica Sinica, 2013 , 71(12) : 1607 -1610 . DOI: 10.6023/A13080904
[1] Shi, W.; Li, X. H.; Ma, H. M. Angew. Chem., Int. Ed. 2012, 51, 6432.
[2] Bhang, S. H.; Won, N.; Lee, T. J.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H. S.; Sung, Y. E.; Hahn, S. K.; Kim, B. S.; Kim, S. ACS Nano 2009, 3, 1389.
[3] Lee, H.; Lee, K.; Kim, I. K.; Park, T. G. Biomaterials 2008, 29, 4709.
[4] Zhu, A. W.; Qu, Q.; Shao, X. L.; Kong, B.; Tian, Y. Angew. Chem., Int. Ed. 2012, 51, 7185.
[5] Zhu, J.; Liao, L.; Zhu, L. N.; Kong, J. L.; Liu, B. H. Acta Chim. Sinica 2013, 71, 69. (朱杰, 廖蕾, 朱丽娜, 孔继烈, 刘宝红, 化学
学报, 2013, 71, 69.)
[6] Luo, J. S.; Wang, Y. Y.; Tan, K. J. Acta Chim. Sinica 2012, 70, 1945. (罗金尚, 王莹莹, 谭克俊, 化学学报, 2012, 70, 1945.)
[7] Men, J. Y.; Gao, B. J.; Chen, Z. P.; Yao, L. Acta Chim. Sinica 2012, 70, 2273. (门吉英, 高保娇, 陈志萍, 么兰, 化学学报, 2012, 70, 2273.)
[8] Wen, Q. S.; Tang, H. W.; Yang, G. M.; Liu, L. B.; Lv, F. T.; Yang, Q.; Wang, S. Acta Chim. Sinica 2012, 70, 2137. (温泉山, 唐红伟, 杨高买, 刘礼兵, 吕凤婷, 杨琼, 王树, 化学学报, 2012, 70, 2137.)
[9] Zhang, Z. M.; Liu, R.; Xu, D. M.; Liu, J. F. Acta Chim. Sinica 2012, 70, 1686. (张宗绵, 刘睿, 徐敦明, 刘景富, 化学学报, 2012, 70, 1686.)
[10] Wang, J. Y.; Song, D. D.; Bao, Y. M. Acta Chim. Sinica 2012, 70, 1193. (王静云, 宋丹丹, 包永明, 化学学报, 2012, 70, 1193.)
[11] Jasmina, L.; Sung, J. C.; Francoise, M. W.; Dusica, M. Chem. Biol. 2005, 12, 1227.
[12] Song, Y. C.; Feng, D.; Shi, W.; Li, X. H.; Ma, H. M. Talanta 2013, 116, 237.
[13] Feng, D.; Song, Y. C.; Shi, W.; Li, X. H.; Ma, H. M. Anal. Chem. 2013, 85, 6530.
[14] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4, 11.
[15] Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Javier, A. M.; Gaub, H. E.; Sto1lzle, S.; Fertig, N.; Parak, W. J. Nano Lett. 2005, 5, 331.
[16] Soenen, S. J.; Manshian, B.; Montenegro, J. M.; Amin, F.; Meermann, B.; Thiron, T.; Cornelissen, M.; Vanhaecke, F.; Doak, S.; Parak, W. J.; Smedt, S. D.; Braeckmans, K. ACS Nano 2012, 6, 5767.
[17] Yang, S. T.; Wang, X.; Wang, H. F.; Lu, F. S.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y. F.; Chen, M.; Huang, Y. P.; Sun, Y. P. J. Phys. Chem. C 2009, 113, 18110.
[18] Lu, J. X.; Song, Y. C.; Shi, W.; Li, X. H.; Ma, H. M. Chin. J. Chem. 2013, 31, 472.
[19] Song, Y. C.; Shi, W.; Chen, W.; Li, X. H.; Ma, H. M. J. Mater. Chem. 2012, 22, 12568.
[20] Choi, S. Y.; Jeong, S.; Jang, S. H.; Park, J.; Park, J. H.; Ock, K. S.; Lee, S. Y.; Joo, S. W. Toxicol. In Vitro 2012, 26, 229.
[21] Sui, C. X.; Liu, Y. F.; Li, P. A.; Zhang, D.; Xia, F. Anal. Methods 2013, 5, 1695.
[22] Mandal, A.; Tamai, N. J. Phys. Chem. C 2008, 112, 8244.
[23] Feng, D.; Zhang, Y. Y.; Shi, W.; Li, X. H.; Ma, H. M. Chem. Commun. 2010, 46, 9203.
/
| 〈 |
|
〉 |