Review

Polyoxometalate-mediated Single-molecule Magnets

  • Feng Xiaojia ,
  • Li Yangguang ,
  • Zhang Zhiming ,
  • Wang Enbo
Expand
  • a Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China;
    b College of Sciences, Shenyang Agricultural University, Shenyang 110161, China

Received date: 2013-06-25

  Online published: 2013-10-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20701005, 91027002, 21271039) and the Fundamental Research Funds for the Central Universities.

Abstract

The design and synthesis of molecular-based materials displaying single-molecule magnet (SMM) property is currently a subject of worldwide research activity. A common strategy is the use of organic multi-dentate O-donor and/or N-donor ligands to assemble various spin carriers into simple complexes or polynuclear clusters so as to satisfy the essential necessaries of a SMM combing with large spin (S) and negative uniaxial anisotropy (D). It is interesting that polyoxometalates (POMs) have recently been developed as a new type of inorganic building blocks for the preparation of SMMs. Generally, POMs are one type of unique inorganic nanoscale clusters with oxygen-rich surfaces, controllable size, shape and charge as well as a series of lacunary structural species, which tend to combine various transition metal (TM) and/or lanthanide (Ln) ions into giant clusters or aggregates. In last five years, a number of {TMn}-, {Lnn}-, and {TMxLny}-based SMMs by the use of POM ligands were reported. Especially, some POMs can also provide an ideal ligand field for Ln ions so as to obtain new type of single-ion magnets (SIMs), which has marked a new impetus in this area. Furthermore, the hybrid POM materials behaving as SMMs have been prepared by dispersing high-spin anisotropic units (like SMMs) into the porous anionic POM-based structures. A recent advance has also focused on the construction of POM-templated polynuclear clusters with SMM properties. In this review, we will give an overall perspective of the present POM-mediated SMMs with the emphasis on the synthetic strategies, the roles and advantages of POMs in the preparation of SMMs as well as the new prospect of this research field in the near future.

Cite this article

Feng Xiaojia , Li Yangguang , Zhang Zhiming , Wang Enbo . Polyoxometalate-mediated Single-molecule Magnets[J]. Acta Chimica Sinica, 2013 , 71(12) : 1575 -1588 . DOI: 10.6023/A13060664

References

[1] Lis, T. Acta Crystallogr. B 1980, 36, 2042.
[2] Rinehart, J. D.; Long, J. R. Chem. Sci. 2011, 2, 2078.
[3] Caneschi, A.; Gatteschi, D.; Sessoli, R.; Barra, A. L.; Brunel, L. C.; Guillot, M. J. Am. Chem. Soc. 1991, 113, 5873.
[4] Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. J. Am. Chem. Soc. 1993, 115, 1804.
[5] Aubin, S. M. J.; Wemple, M. W.; Adams, D. M.; Tsai, H. L.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1996, 118, 7746.
[6] Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bull. 2000, 25, 66.
[7] Leuenberger, M. N.; Loss, D. Nature 2001, 410, 789.
[8] Hill, S.; Edwards, R. S.; Aliaga-Alcalde, N.; Christou, G. Science 2003, 302, 1015.
[9] Gatteschi, D.; Sessoli, R. Angew. Chem. Int. Ed. 2003, 42, 268.
[10] Milios, C. J.; Piligkos, S.; Brechin, E. K. Dalton Trans. 2008, 1809 and references there in.
[11] Madhu, N. T.; Tang, J. K.; Hewitt, I. J.; Clerac, R.; Wernsdorfer, W.; van Slageren, J.; Anson, C. E.; Powell, A. K. Polyhedron 2005, 24, 2864.
[12] Lecren, L.; Wernsdorfer, W.; Li, Y. G.; Roubeau, O.; Miyasaka, H.; Clérac, R. J. Am. Chem. Soc. 2005, 127, 11311.
[13] Ganivet, C. R.; Ballesteros, B.; Torre, G.; Clemente-Juan, J. M.; Coronado, E.; Torres, T. Chem. Eur. J. 2013, 19, 1457.
[14] Liu, J. L.; Chen, Y. C.; Zheng, Y. Z.; Lin, W. Q.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Tong, M. L. Chem. Sci. 2013, 4, 3310.
[15] Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694.
[16] Pope, M. T. Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983.
[17] Ed.: Hill, C. L. Special Issue on Polyoxometalates. Chem. Rev. 1998, 98, 1.
[18] Long, D. L.; Burkholder, E.; Cronin, L. Chem. Soc. Rev. 2007, 36, 105.
[19] Yin, P. C.; Li, D.; Liu, T. B. Chem. Soc. Rev. 2012, 41, 7368.
[20] Banerjee, A.; Bassil, B. S.; Röchenthaler, G. V.; Kortz, U. Chem. Soc. Rev. 2012, 41, 7590.
[21] Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Chem. Soc. Rev. 2012, 41, 7605.
[22] Song, Y. F.; Tsunashima, R. Chem. Soc. Rev. 2012, 41, 7384.
[23] Casanpastor, N.; Basserra, J.; Coronado, E.; Pourroy, G.; Baker, L. C. W. J. Am. Chem. Soc. 1992, 26, 10380.
[24] Coronado, E.; Gomez-Garcia, C. J. Comments Inorg. Chem. 1995, 17, 255.
[25] Coronado, E.; Gomez-Garcia, C. J. Chem. Rev. 1998, 98, 273.
[26] Coronado, E.; Gimenez-Saiz, C.; Gomez-Garcia, C. J. Coord. Chem. Rev. 2005, 249, 1776.
[27] Clemente-Juan, J. M.; Coronado, E. Coord. Chem. Rev. 1999, 193, 361.
[28] Bassil, B. S.; Kortz, U. Z. Anorg. Allg. Chem. 2010, 636, 2222.
[29] Bassil, B. S.; Kortz, U. Dalton Trans. 2011, 40, 9649.
[30] Reinoso, S. Dalton Trans. 2011, 40, 6610.
[31] Oms, O.; Dolbecq, A.; Mialane, P. Chem. Soc. Rev. 2012, 41, 7497.
[32] Zheng, S. T.; Yang, G. Y. Chem. Soc. Rev. 2012, 41, 7623.
[33] Ritchie, C.; Ferguson, A.; Nojiri, H.; Miras, H. N.; Song, Y. F.; Long, D. L.; Burkholder, E.; Murrie, M.; Köerler, P.; Brechin, E. K.; Cronin, L. Angew. Chem. Int. Ed. 2008, 47, 5609.
[34] AlDamen, M. A.; Clemente-Juan, J. M.; Coronado, E.; Martí-Gastaldo, C.; Gaita-Ariñ, A. J. Am. Chem. Soc. 2008, 130, 8874.
[35] Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Chem. Soc. Rev. 2012, 41, 7403.
[36] Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariñ, A. Chem. Soc. Rev. 2012, 41, 7464.
[37] Luis, F.; Martínez-Pérez, M. J.; Montero, O.; Coronado, E.; Cardona-Serra, S.; Martí-Gastaldo, C.; Clemente-Juan, J. M. Phys. Rev. B 2010, 82, 060403-1.
[38] Martínez-Pérez, M. J.; Cardona-Serra, S.; Schlegel, C.; Moro, F.; Alonso, P. J.; Prima-García, H.; Clemente-Juan, J. M.; Evangelisti, M.; Gaita-Ariñ, A.; Sesé, J.; van Slageren, J.; Coronado, E.; Luis, F. Phys. Rev. Lett. 2012, 108, 247213-1.
[39] Fang, X. K.; Speldrich, M.; Schilder, H.; Cao, R.; O'Halloran, K. P.; Hill, C. L.; Kogerler, P. Chem. Commun. 2010, 46, 2760.
[40] Fang, X. K.; McCallum, K.; Pratt Ⅲ, H. D.; Anderson, T. M.; Dennis, K.; Luban, M. Dalton Trans. 2012, 41, 9867.
[41] Fang, X. K.; Köerler, P.; Speldrich, M.; Schilder, H.; Luban, M. Chem. Commun. 2012, 48, 1218.
[42] Zhang, Z. M.; Yao, S.; Li, Y. G.; Wu, H. H.; Wang, Y. H.; Rouzières, M.; Clérac, R.; Su, Z. M.; Wang, E. B. Chem. Commun. 2013, 49, 2515.
[43] Compain, J. D.; Mialane, P.; Dolbecq, A.; Mbomekallé, I. M.; Marrot, J.; Sécheresse, F.; Rivière, E.; Rogez, G.; Wernsdorfer, W. Angew. Chem. Int. Ed. 2009, 48, 3077.
[44] Giusti, A.; Charron, G.; Mazerat, S.; Compain, J. D.; Mialane, P.; Dolbecq, A.; Rivière, E.; Wernsdorfer, W.; Biboum, R. N.; Keita, B.; Nadjo, L.; Filoramo, A.; Bourgoin, J. P.; Mallah, T. Angew. Chem. Int. Ed. 2009, 48, 4949.
[45] Ibrahim, M.; Lan, Y.; Bassil, B. S.; Xiang, Y.; Suchopar, A.; Powell, A. K.; Kortz, U. Angew. Chem. Int. Ed. 2011, 50, 4708.
[46] El Moll, H.; Dolbecq, A.; Marrot, J.; Rousseau, G.; Haouas, M.; Taulelle, F.; Rogez, G.; Wernsdorfer, W.; Keita, B.; Mialane, P. Chem. Eur. J. 2012, 18, 3845.
[47] Lydon, C.; Sabi, M. M.; Symes, M. D.; Long, D. L.; Murrie, M.; Yoshii, S.; Nojiri, H.; Cronin, L. Chem. Commun. 2012, 48, 9819.
[48] AlDamen, M. A.; Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariñ, A.; Martí-Gastaldo, C.; Luis, F.; Montero, O. Inorg. Chem. 2009, 48, 3467.
[49] Ritchie, C.; Speldrich, M.; Gable, R. W.; Sorace, L.; Köerler, P.; Boskovic, C. Inorg. Chem. 2011, 50, 7004.
[50] Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariñ, A.; Camón, A.; Evangelisti, M.; Luis, F.; Martínez-Pérez, M. J.; Sesé, J. J. Am. Chem. Soc. 2012, 134, 14982.
[51] Li, F. Y.; Guo, W. H.; Xu, L.; Ma, L. F.; Wang, Y. C. Dalton Trans. 2012, 41, 9220.
[52] Suzuki, K.; Satoa, R.; Mizuno, N. Chem. Sci. 2013, 4, 596.
[53] Wu, H. H.; Yao, S.; Zhang, Z. M.; Li, Y. G.; Song, Y.; Liu, Z. J.; Han, X. B.; Wang, E. B. Dalton Trans. 2013, 42, 342.
[54] Zhen, Y. Z.; Liu, B.; Li, L. L.; Wang, D. J.; Ma, Y.; Hu, H. M.; Gao, S. L.; Xue, G. L. Dalton Trans. 2013, 42, 58.
[55] Wu, Q.; Li, Y. G.; Wang, Y. H.; Clérac, R.; Lu, Y.; Wang, E. B. Chem. Commun. 2009, 5743.
[56] Sawada, Y.; Kosaka, W.; Hayashi, Y.; Miyasaka, H. Inorg. Chem. 2012, 51, 4824.
[57] Zhou, W. Z.; Feng, X. J.; Ke, H. S.; Li, Y. G.; Tang, J. K.; Wang, E. B. Inorg. Chim. Acta 2013, 394. 770.
[58] Feng, X. J.; Zhou, W. Z.; Li, Y. G.; Ke, H. S.; Tang, J. K.; Clérac, R.; Wang, Y. H.; Su, Z. M.; Wang, E. B. Inorg. Chem. 2012, 51, 2722.
[59] Wang, T. T.; Bao, S. S.; Ren, M.; Cai, Z. S.; Zheng, Z. H.; Xu, Z. L.; Zheng, L. M. Chem. Asian J. 2013, 8, 1772.
[60] MÜller, A.; Peters, F.; Pope, M. T.; Gatteschi, D. Chem. Rev. 1998, 98, 239.
[61] Li, F. Y.; Xu, L. Dalton Trans. 2011, 40, 4024.
[62] Li, Y. W.; Li, Y. G.; Wang, Y. H.; Feng, X. J.; Lu, Y.; Wang, E. B. Inorg. Chem. 2009, 48, 6452 and references there in.
[63] Sugita, M.; Ishikawa, N.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. Inorg. Chem. 2006, 45, 1299.
[64] Sessoli, R.; Powell, A. K. Coord. Chem. Rev. 2009, 253, 2328.
[65] Tang, J. K.; Hewitt, I.; Madhu, N. T.; Chastanet, G.; Wernsdorfer, W.; Anson, C. E.; Benelli, C.; Sessoli, R.; Powell, A. K. Angew. Chem. Int. Ed. 2006, 45, 1729.
[66] Jiang, S. D.; Wang, B. W.; Su, G.; Wang, Z. M.; Gao, S. Angew. Chem. Int. Ed. 2010, 49, 7448.
[67] Car, E. P.; Perfetti, M.; Mannini, M.; Favre, A.; Caneschi, A.; Sessoli, R. Chem. Commun. 2011, 47, 3751.
[68] Jeletic, M.; Lin, P. H.; Le Roy, J. J.; Korobkov, I.; Gorelsky, S. I.; Murugesu, M. J. Am. Chem. Soc. 2011, 133, 19286.
[69] Baldoví, J.; Cardona-Serra, S.; Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariñ, A.; Palii, A. Inorg. Chem. 2012, 51, 12565.
[70] Ren, M.; Bao, S. S.; Hoshino, N.; Akutagawa, T.; Wang, B. W.; Ding, Y. C.; Wei, S. Q.; Zheng, L. M. Chem. Eur. J. 2013, 19, 9619.
[71] Guo, Y. N.; Xu, G. F.; Gamez, P.; Zhao, L.; Lin, S. Y.; Deng, R. P.; Tang, J. K.; Zhang, H. J. J. Am. Chem. Soc. 2010, 132, 8538.
[72] Guo, Y. N.; Xu, G. F.; Wernsdorfer, W.; Ungur, L.; Guo, Y.; Tang, J. K.; Zhang, H. J.; Chibotaru, L. F.; Powell, A. K. J. Am. Chem. Soc. 2011, 133, 11948.
[73] Guo, P. H.; Liao, X. F.; Leng, J. D.; Tong, M. L. Acta Chim. Sinica 2013, 71, 173. (郭鹏虎, 廖小芬, 冷际东, 童明良, 化学学报, 2013, 71, 173.)
[74] Lin, S. Y.; Guo, Y. N.; Xu, G. F.; Tang, J. K. Chin. J. Appl. Chem. 2010, 27, 1365. (林双燕, 郭云南, 许公峰, 唐金魁, 分析化学, 2010, 27, 1365.)
[75] Boskovic, C.; Bircher, R.; Tregenna-Piggott, P. L. W.; GÜdel, H. U.; Paulsen, C.; Wernsdorfer, W.; Barra, A. L.; Khatsko, E.; Neels, A.; Stoeckli-Evans, H. J. Am. Chem. Soc. 2003, 125, 14046.
[76] Miyasaka, H.; Clérac, R.; Ishii, T.; Chang, H. C.; Kitagawa, S.; Yamashita, M. J. Chem. Soc., Dalton Trans. 2002, 1528.
[77] Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199.
[78] Forment-Aliaga, A.; Coronado, E.; Feliz, M.; Gaita-Ariñ, A.; Llusar, R.; Romero, F. M. Inorg. Chem. 2003, 42, 8019.
[79] Lecren, L.; Wernsdorfer, W.; Li, Y. G.; Vindigni, A.; Miyasaka, H.; Clérac, R. J. Am. Chem. Soc. 2007, 129, 5045.
[80] Miyasaka, H.; Clérac, R.; Wernsdorfer, W.; Lecren, L.; Bonhomme, C.; Sugiura, K. I.; Yamashita, M. Angew. Chem. Int. Ed. 2004, 43, 2801.
[81] Miyasaka, H.; Saitoh, A.; Abe, S. Coord. Chem. Rev. 2007, 251, 2622.

[82] LÜ, Z.; Yuan, M.; Pan, F.; Gao, S.; Zhang, D.; Zhu, D. Inorg. Chem. 2006, 45, 3538.
[83] Yuan, M.; Zhao, F.; Zhang, W.; Pan, F.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2007, 13, 2937.
[84] Miyasaka, H.; Nakata, K.; Lecren, L.; Coulon, C.; Nakazawa, Y.; Fujisaki, T.; Sugiura, K.; Yamashita, M.; Clérac, R. J. Am. Chem. Soc. 2006, 128, 3770.
[85] Fujisaki, T.; Nakazawa, Y.; Oguni, M.; Nakata, K.; Yamashita, M.; Lecren, L.; Miyasaka, H. J. Phys. Soc. Jpn. 2007, 76, 104602.
[86] Yamashita, S.; Fujisaki, T.; Nakazawa, Y.; Oguni, M.; Nakata, K.; Yamashita, M.; Miyasaka, H. J. Phys. Soc. Jpn. 2008, 77, 073708.
[87] Mito, M.; Ogawa, M.; Deguchi, H.; Yamashita, M.; Miyasaka, H. J. Appl. Phys. 2010, 107, 124316.
[88] Al-Karaghouli, A. R.; Day, R. O.; Wood, J. S. Inorg. Chem. 1978, 17, 3702.
[89] Malta, O. L.; Legendziewicz, J.; Huskowska, E.; Turowska-Tyrk, I.; Albuquerque, R. Q.; de Mello Donega, C.; Ge Silva, F. R. J. Alloys Compd. 2001, 323, 654.
[90] Huskowska, E.; Turowska-Tyrk, I.; Legendziewicz, J.; Riehl, J. P. New J. Chem. 2002, 26, 1461.
[91] Chandler, B. D.; Yu, J. O.; Cramb, D. T.; Shimizu, G. K. H. Chem. Mater. 2007, 19, 4467.
[92] MÜller, A.; Todea, A. M.; Böge, H.; Slageren, J. V.; Dressel, M.; Stammlera, A.; Rusu, M. Chem. Commun. 2006, 3066.
[93] Miras, H. N.; Cooper, G. J. T.; Long, D. L.; Böge, H.; MÜller, A.; Streb, C.; Cronin, L. Science 2010, 327, 72.
[94] Xie, Y. P.; Mak, T. C. W. J. Am. Chem. Soc. 2011, 133, 3760.
[95] Gheorghe, R.; Andruh, M.; Moller, A.; Schmidtmann, M. Inorg. Chem. 2002, 41, 5314.
[96] Madalan, A. M.; Roesky, H. W.; Andruh, M.; Noltemeyer, M.; Stanica, N. Chem. Commun. 2002, 1638.
[97] Costes, J. P.; Novitchi, G.; Shova, S.; Dahan, F.; Donnadieu, B.; Tuchagues, J. P. Inorg. Chem. 2004, 43, 7792.
[98] Costes, J. P.; Dahan, F.; Wernsdorfer, W. Inorg. Chem. 2006, 45, 5.
[99] Costes, J. P.; Auchel, M.; Dahan, F.; Peyrou, V.; Shova, S.; Wernsdorfer, W. Inorg. Chem. 2006, 45, 1924.
[100] Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420.
[101] Kajiwara, T.; Nakano, M.; Takaishi, S.; Yamashita, M. Inorg. Chem. 2008, 47, 8604.
Outlines

/