Article

Computer Simulations of Fibronectin Adsorption on Graphene Modified Titanium Dioxide Surfaces

  • Yang Chuan ,
  • Peng Chunwang ,
  • Liao Chenyi ,
  • Zhou Jian
Expand
  • School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640

Received date: 2013-08-06

  Online published: 2013-10-16

Supported by

Project supported by the National Key Basic Research Program of China (No. 2013CB733504), the National Natural Science Foundation of China (No. 21376089), Guangdong Science Foundation (No. S2011010002078), the Fundamental Research Funds for the Central Universities (No. SCUT-2013ZM0073), State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL12-05).

Abstract

Fibronectin (FN) could be used to modify the transplant of titanium dioxide. However, the hydrophilicity of titanium dioxide may prevent the stable adsorption of protein. Suitable hydrophobic modification of the surface can promote protein adsorption. In this work, all-atom molecular dynamics (MD) simulations were used to study the adsorption of FN on rutile surface, 23% graphene layer modified rutile surface, 92% graphene layer modified rutile surface and the graphite surface. The graphene layer can change the surface chemistry of rutile and break the strong interactions between rutile and water molecules. Parallel tempering Monte Carlo algorithm was used firstly to identify the global-minimum-energy orientation of FN. Subsequently, the orientation and conformation of adsorbed FN on modified titanium dioxide surfaces were studied by MD simulations. The simulation results show that FN can hardly adsorb on the rutile surface. Graphene layer deposited on titanium dioxide can reduce the surface hydrophilicity. When the rutile surface is covered by the graphene layer, FN adsorbs on the surface stably. The specific recognition site of FN faces toward the solution when FN is adsorbed on 23% graphene layer modified rutile surface, which is conducive to the identification of integrin. However, if too much graphene layer deposited on rutile, the specific recognition site of FN would get close to the surface due to the stronger adsorption. The minimum distance between FN and various surfaces can indicate the stability of protein adsorption on surfaces. DSSP analysis shows that the seven β-sheets of FN do not change much in all systems during the 40 ns MD simulations. Due to the deposition of graphene layer, the density of water molecules near the surface decreases. The adsorption energy of FN on different surfaces increases with higher surface graphene composition. Graphene modification could promote the fibronectin adsorption on rutile surfaces. This work can provide some guidance for the design and development of modified implant biomaterials.

Cite this article

Yang Chuan , Peng Chunwang , Liao Chenyi , Zhou Jian . Computer Simulations of Fibronectin Adsorption on Graphene Modified Titanium Dioxide Surfaces[J]. Acta Chimica Sinica, 2014 , 72(3) : 401 -406 . DOI: 10.6023/A13080824

References

[1] Cui, G.; Liu, P.-S. Acta Chim. Sinica 2013, 71, 947. (崔光, 刘培生, 化学学报, 2013, 71, 947.)

[2] Xiong, B.-T.; Zhu, Z.-Y.; Wang, C.-R.; Chen, B.-X.; Luo, J.-Y. Acta Chim. Sinica 2013, 71, 443. (熊必涛, 朱志艳, 王长荣, 陈宝信, 骆钧炎, 化学学报, 2013, 71, 443.)

[3] Song, M.; Feng, X.; Lu, X.; Wang, X. Electroanalysis 2010, 22, 668.

[4] Piskounova, S.; Forsgren, J.; Brohede, U.; Engqvist, H.; Strømme, M. J. Biomed. Mater. Res., Part B 2009, 91, 780.

[5] Schliephake, H.; Botel, C.; Forster, A.; Schwenzer, B.; Reichert, J.; Scharnweber, D. Biomaterials 2012, 33, 1315.

[6] Chen, H.; Su, X.; Neoh, K. G.; Choe, W. S. Langmuir 2008, 24, 6852.

[7] Geiger, B.; Bershadsky, A.; Pankov, R.; Yamada, K. M. Nat. Rev. Mol. Cell Biol. 2001, 2, 793.

[8] Yu, S.; Ito, A.; Matsuno, T.; Oyane, A.; Tamazawa, G.; Satoh, T.; Yamazaki, A.; Uchimura, E.; Tadao, O. Biomed. Mater. 2007, 2, 116.

[9] Middleton, C. A.; Pendegrass, C. J.; Gordon, D.; Jacobs, J.; Blunn, G. W. J. Biomed. Mater. Res., Part A 2007, 83A, 1032.

[10] Gorbahn, M.; Klein, M. O.; Lehnert, M.; Ziebart, T.; Brüllmann, D.; Köper, I.; Wagner, W.; Al-Nawas, B.; Veith, M. J. Oral Maxillofac. Surg. 2012, 70, 1827.

[11] Rapuano, B. E.; MacDonald, D. E. Colloids Surf., B 2011, 82, 95.

[12] Zhou, J.; Chen, S.; Jiang, S. Langmuir 2003, 19, 3472.

[13] Zhou, J.; Tsao, H. K.; Sheng, Y. J.; Jiang, S. Y. J. Chem. Phys. 2004, 121, 1050.

[14] Zhou, J.; Zheng, J.; Jiang, S. Y. J. Phys. Chem. B 2004, 108, 17418.

[15] Zhang, A.-J.; Xie, Y.; Zhou, J. Prog. Chem. 2009, 21, 1408. (章爱娟, 谢韵, 周健, 化学进展, 2009, 21, 1408.)

[16] Xie, Y.; Liao, C.; Zhou, J. Biophys. Chem. 2013, 179, 26.

[17] Xie, Y.; Liu, M.; Zhou, J. Appl. Surf. Sci. 2012, 258, 8153.

[18] Liu, J.; Liao, C.; Zhou, J. Langmuir 2013, 29, 11366.

[19] Wu, C. Y.; Chen, M. J.; Xing, C. Langmuir 2010, 26, 15972.

[20] Song, D. P.; Chen, M. J.; Liang, Y. C.; Bai, Q. S.; Chen, J. X.; Zheng, X. F. Acta Biomater. 2010, 6, 684.

[21] Kang, Y.; Li, X.; Tu, Y.; Wang, Q.; Agren, H. J. Phys. Chem. C 2010, 114, 14496.

[22] Kavathekar, R. S.; Dev, P.; English, N. J.; MacElroy, J. Mol. Phys. 2011, 109, 1649.

[23] Wei, M.-J.; Lu, L.-H.; Zhu, Y.-D.; Guo, X.-J.; Lu, X.-H. CIESC J. 2013, 64, 365. (魏明杰, 吕玲红, 朱育丹, 郭晓静, 陆小华, 化工学报, 2013, 64, 365.)

[24] Wei, M. J.; Zhou, J.; Lu, X.; Zhu, Y.; Liu, W.; Lu, L.; Zhang, L. Fluid Phase Equilib. 2011, 302, 316.

[25] Sun, C. H.; Liu, L. M.; Selloni, A.; Lu, G. Q.; Smith, S. C. J. Mater. Chem. 2010, 20, 10319.

[26] Wei, M. J.; Zhang, L. Z.; Lu, L. H.; Zhu, Y. D.; Gubbins, K. E.; Lu, X. H. Phys. Chem. Chem. Phys. 2012, 14, 16536.

[27] Li, L.; Zhu, Y.; Lu, X.; Wei, M.; Zhuang, W.; Yang, Z.; Feng, X. Chem. Commun. 2012, 48, 11525.

[28] Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J. ACS Nano 2009, 3, 907.

[29] Zhou, K.; Zhu, Y.; Yang, X.; Jiang, X.; Li, C. New J. Chem. 2011, 35, 353.

[30] Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew. Chem. Int. Ed. 2009, 48, 7752.

[31] Yang, M.; Hou, Y.; Kotov, N. A. Nano Today 2012, 7, 430.

[32] Main, A. L.; Harvey, T. S.; Baron, M.; Boyd, J.; Campbell, I. D. Cell 1992, 71, 671.

[33] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435.

[34] MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586.

[35] Diebold, U. Surf. Sci. Rep. 2003, 48, 53.

[36] Xie, Y.; Zhou, J.; Jiang, S. J. Chem. Phys. 2010, 132, 065101.

[37] Chatterjee, S.; Debenedetti, P. G.; Stillinger, F. H.; Lynden-Bell, R. M. J. Chem. Phys. 2008, 128, 124511.

[38] Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684.

[39] Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.

[40] van der Spoel, D.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Tieleman, D. P.; Sijbers, A. L. T. M.; Hess, B.; Feenstra, K. A.; Lindahl, E.; van Drunen, R.; Berendsen, H. J. C., Gromacs User Manual version 4.5.4, www.gromacs.org, 2010.

[41] Paci, E.; Karplus, M. J. Mol. Biol. 1999, 288, 441.

[42] Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577.

Outlines

/