Review

Recent Development of Co3O4 and Its Composites as Anode Materials of Lithium-ion Batteries

  • Huang Guoyong ,
  • Xu Shengming ,
  • Wang Junlian ,
  • Li Linyan ,
  • Wang Xuejun
Expand
  • a Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084;
    b Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing 100084

Received date: 2013-06-23

  Online published: 2013-10-27

Supported by

Project supported by the National Natural Science Foundation of China (No. 51274130).

Abstract

The depletion of non-renewable fossil fuels and environmental issues force us to explore substitutes for fossil fuels, such as solar energy, hydroelectricity, thermal enegy, wind power etc., which are the potential global energy sources in the future. However, most of the renewable energy are typically periodic or intermittent and need to equip with appropriate electrical energy storage devices, such as lithium-ion batteries (LIBs). Novel and advanced anode and cathode materials are the key technologies for high performance LIBs, so various electrode materials with high energy density have been extensively investigated. Cobaltosic oxide (Co3O4), commonly used as the anode materials for LIBs, has attracted extensive interest due to its high theoretical specific capacity (890 mAh·g-1), high tap density and stable chemical properties. However, its practical use is hindered because of the large volume change during repeated lithium uptake and removal reactions, low electronic conductivity, rapid capacity fading upon extended cycling and poor rate capability. To overcome these problems, it is an effective way to prepare nanometer-sized materials with nano-/micrometer-sized structures, which can buffer huge volume changes during the lithium insertion/extraction process and offer extra space for the lithium storage. Up to now, various morphologies of Co3O4 have been synthesized, such as nanoparticles, nanospheres, nanorods, nanowires, nanotubes, nanosheets, nanoplatelets, nanocubes, hierarchical nanoflowers and some other more complex structures. Another method is to composite with other materials such as carbon or graphene, which has large surface area, open porous structure, great flexibility, chemical stability, high electrical conductivity and the ability to facilitate electron transport within the active sites and effectively alleviate the strain from the volume expansion. In this paper, the recent advances of Co3O4 and its composites as anode materials of LIBs are reviewed. The researches are classified by the characteristics and morphologies of materials. Their advantages and disadvantages are summarized and the possible reaction mechanisms are explained. In addition, it is also discussed how to improve the electrochemical performance of Co3O4.

Cite this article

Huang Guoyong , Xu Shengming , Wang Junlian , Li Linyan , Wang Xuejun . Recent Development of Co3O4 and Its Composites as Anode Materials of Lithium-ion Batteries[J]. Acta Chimica Sinica, 2013 , 71(12) : 1589 -1597 . DOI: 10.6023/A13060656

References

[1] Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928.
[2] Chen, J. J. Materials 2013, 6, 156.
[3] Volder, M. F. L. D.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 535, 339.
[4] Xiong, Z. L.; Yun, Y. S.; Jin, H. J. Materials 2013, 6, 1138.
[5] Lee, Y. J.; Yi, H.; Kim, W. J.; Kang, K.; Yun, D. S.; Strano, M. S.; Ceder, G.; Belcher, A. M. Science 2009, 324, 1051.
[6] Cai, D. D.; Wang, S. Q.; Lian, P. C.; Zhu, X. F.; Li, D. D.; Yang, W. S.; Wang, H. H. Electrochim. Acta 2013, 90, 492.
[7] Xu, Y. H.; Liu, Q.; Zhu, Y. J.; Liu, Y. H.; Langrock, A.; Zachariah, M. R.; Wang, C. S. Nano Lett. 2013, 13, 470.
[8] Enrique, Q. G.; JÜrgen, C.; Helmut, F. Materials 2013, 6, 626.
[9] Xue, L. G.; Fu, Z. H.; Yao, Y.; Huang, T.; Yu, A. S. Electrochim. Acta 2010, 55, 7310.
[10] Lee, Y. J.; Lee, Y. J.; Oh, D.; Chen, T.; Ceder, G.; Belcher, A. M. Nano Lett. 2010, 10, 2433.
[11] Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Science 1997, 276, 1395.
[12] Gu, Y.; Xu, Y.; Wang, Y. ACS Appl. Mater. Interfaces 2013, 5, 801
[13] Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Chem. Mater. 2010, 22, 4522.
[14] Zhang, X. N.; Pan, G. L.; Li, G. R.; Qu, J. Q.; Gao X. P. Solid State Ionics 2007, 178, 1107.
[15] Cui, Y. H.; Xue, M. Z.; Fu, Z. W.; Wang, X. L.; Liu, X. J. J. Alloys Compd. 2013, 555, 283.
[16] Kim, Y.; Hwang, H.; Yoon, C. S.; Kim, M. G.; Cho, J. Adv. Mater. 2007, 19, 92.
[17] Yan, H.; Zhu, Z.; Zhang, D.; Li, W.; Lu, Q. J. Power Sources 2012, 219, 45.
[18] Sun, S. J.; Wen, Z. Y.; Jin, J.; Cui, Y. M.; Lu, Y. Microporous Mesoporous Mater. 2013, 169, 242.
[19] Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Nano Lett. 2012, 12, 3005.
[20] Hu, L.; Zhong, H.; Zheng, X. R.; Huang, Y. M.; Zhang, P.; Chen, Q. W. Sci. Rep. 2012, 2, 1.
[21] Bai, Z. C.; Fan, N.; Sun, C. H.; Ju, Z. C.; Guo, C. L.; Yang, J.; Qian, Y. T. Nanoscale 2013, 5, 2442.
[22] Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanoscale 2012, 4, 2526.
[23] Li, W. J.; Fu, Z. W. Appl. Surf. Sci. 2010, 256, 2447.
[24] Li, X. L.; Song, H. F.; Wang, H.; Zhang, Y. L.; Du, K.; Li, H. Y.; Huang, J. M. J. Appl. Electrochem. 2012, 42, 1065.
[25] Li, W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.
[26] Shaju, K. M.; Jiao, F.; De'bart, A.; Bruce, G. P. Phys. Chem. Chem. Phys. 2007, 9, 1837.
[27] Wang, F.; Lu, C. C.; Qin, Y. F.; Liang, C. C.; Zhao, M. S.; Yang, S. C.; Sun, Z. B.; Song, X. P. J. Power Sources 2013, 235, 67.
[28] Zhang, M.; Jia, M. Q.; Jin, Y. H.; Shi, X. R. Appl. Surf. Sci. 2012, 263, 573.
[29] Wu, Y.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Nano Lett. 2013, 13, 818.
[30] Li, Y.; Zhu, C. L.; Lu, T.; Guo, Z. P.; Zhang, D.; Ma, J.; Zhu, S. M. Carbon 2013, 52, 565.
[31] Zhang, G. H.; Chen, Y. J.; Qu, B. H.; Hu, L. L.; Mei, L.; Lei, D. N.; Li, Q.; Chen, L. B.; Li, Q. H.; Wang, T. H. Electrochim. Acta 2012, 80, 140.
[32] Huang, X. H.; Tu, J. P.; Zhang, C. Q.; Zhou, F. Electrochim. Acta 2010, 55, 8981.
[33] Zhong, K. F.; Zhang, B.; Luo, S. H.; Wen, W.; Li, H.; Huang, X. J.; Chen, L. Q. J. Power Sources 2011, 196, 6802.
[34] Wang, J. Z.; Du, N.; Wu, H.; Zhang, H.; Yu, J. X.; Yang, D. R. J. Power Sources 2013, 222, 32.
[35] Wang, L. L.; Gong, H. X.; Wang, C. H.; Wang, D.; Tang, K. B.; Qian, Y. T. Nanoscale 2012, 4, 6850.
[36] Liu, D. Q.; Yang, Z. B.; Wang, P.; Li, F.; Wang, D. S.; He, D. Y. Nanoscale 2013, 5, 1917.
[37] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
[38] Sun, Y.; Feng, X. Y.; Chen, C. H. J. Power Sources 2011, 196, 784.
[39] Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Angew. Chem. 2013, 125, 1.
[40] Hong, S. H.; Bae, J. S.; Ahn, H. J. Met. Mater. Int. 2008, 14, 229.
[41] Zhao, W. W.; Liu, Y.; Li, H. L.; Zhang, X. G. Mater. Lett. 2008, 62, 772.
[42] Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Chem. Eur. J. 2009, 15, 6169.
[43] Lu, Y.; Wang, Y.; Zou, Y. Q.; Jiao, Z.; Zhao, B.; He, Y. Q.; Wu, M. H. Electrochem. Commun. 2010, 12, 101.
[44] Yan, N.; Hu, L.; Li, Y.; Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q. W. J. Phys. Chem. C 2012, 116, 7227.
[45] Dong, Q.; Kumada, N.; Yonesaki, Y.; Takei, T.; Kinomura, N. Mater. Res. Bull. 2011, 46, 1156.
[46] Tian, L.; Huang, K. L.; Liu, Y. N.; Liu, S. Q. J. Solid State Chem. 2011, 184, 2961.
[47] Li, Y. L.; Zhao, J. Z.; Dan, Y. Y.; Ma, D. C.; Zhao, Y.; Hou, S. N.; Lin, H. B.; Wang, Z. C. Chem. Eng. J. 2011, 166, 428.
[48] Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.
[49] Shim, H. W.; Jin, Y. H.; Seo, S. D.; Lee, S. H.; Kim D. W. ACS Nano 2011, 5, 443.
[50] Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Chem. Eur. J. 2010, 16, 5215.
[51] Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. ACS Nano 2010, 4, 1425.
[52] Li, Y. G.; Tan, B.; Wu, Y. Y. Nano Lett. 2008, 8, 256.
[53] Xue, X. Y.; Yuan, S.; Xing, L. L.; Chen, Z. H.; He, B.; Chen, Y. J. Chem. Commun. 2011, 47, 4718.
[54] Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.
[55] Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Huang, J. N.; Yan, W. J.; Liu, G. Mater. Lett. 2008, 62, 3410.
[56] Xu, R.; Wang, J. W.; Li, Q. Y.; Sun, G. Y.; Wang, E. B.; Li, S. H.; Gu, J. M.; Ju, M. L. J. Solid State Chem. 2009, 182, 3177.
[57] Keng, P. Y.; Kim, B. Y.; Shim, I. B.; Sahoo, R.; Veneman, P. E.; Armstrong, N. R.; Yoo, H.; Pemberton, J. E.; Bull, M. M.; Griebel, J. J.; Ratcliff, E. L.; Nebesny, K. G.; Pyun, J. ACS Nano 2009, 3, 3143.
[58] Xu, M. W.; Wang, F.; Zhao, M. S.; Yang, S.; Song, X. P. Electrochim. Acta 2011, 56, 4876.
[59] Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Power Sources 2008, 182, 359.
[60] Rui, X. H.; Tan, H. T.; Sim, D. H.; Liu, W. L.; Xu, C.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. J. Power Sources 2013, 222, 97.
[61] Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Adv. Funct. Mater. 2012, 22, 861.
[62] Wang, L. M.; Liu, B.; Ran, S. H.; Huang, H. T.; Wang, X. F.; Liang, B.; Chen, D.; Shen, G. Z. J. Mater. Chem. 2012, 22, 23541.
[63] Wang, S. J.; Zhang, B. P.; Zhao, C. H.; Li, S. J.; Zhang, M. X.; Yan, L. P. Appl. Surf. Sci. 2011, 257, 3358.
[64] Zhang, P.; Guo, Z. P.; Huang, Y. D.; Jia, D. Z.; Liu, H. K. J. Power Sources 2011, 196, 6987.
[65] Wang, X.; Guan, H.; Chen, S.; Li, H. Q.; Zhai, T. Y.; Tang, D. M.; Bando, Y.; Golberg, D. Chem. Commun. 2011, 47, 12280.
[66] Wang, Y. F.; Zhang, L. J. J. Power Sources 2012, 209, 20.
[67] Zhan, L.; Wang, Y. L.; Qiao, W. M.; Ling, L. C.; Yang, S. B. Electrochim. Acta 2012, 78, 440.
[68] Wang, B.; Wang, Y.; Park, J.; Ahn, H.; Wang, G. X. J. Alloys Compd. 2011, 509, 7778.
[69] Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K. ChemSusChem 2010, 3, 236.
[70] Wang, G. L.; Liu, J. C.; Tang, S.; Li, H. Y.; Cao, D. X. J. Solid State Electrochem. 2011, 15, 2587.
[71] Li, B. Y.; Cao, H. Q.; Shao, J.; Li, G. Q.; Qu, M. Z.; Yin, G. Inorg. Chem. 2011, 50, 1628.
[72] Choi, B. G.; Chang, S. J.; Lee, Y. B.; Bae, J. S.; Kim, H. J.; Huh, Y. S. Nanoscale 2012, 4, 5924.
[73] Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. ACS Nano 2010, 4, 3187.
[74] Yang, X. L.; Fan, K. C.; Zhu, Y. H.; Shen, J. H.; Jiang, X.; Zhao, P.; Luan, S. R.; Li, C. Z. ACS Appl. Mater. Interfaces 2013, 5, 997.
[75] Guo, H. J.; Li, X. H.; Xie, J.; Wang, Z. X.; Peng, W. J.; Sun, Q. M. Energy Convers. Manage. 2010, 51, 247.
[76] Park, J.; Moon, W. G.; Kim, G. P.; Nam, I.; Park, S.; Kim, Y.; Yi, J. Electrochim. Acta 2013, 105, 110.
[77] Abbas, S. M.; Hussain, S. T.; Ali, S.; Ahmad, N.; Ali, N.; Munawar, K. S. Electrochim. Acta 2013, 105, 481.
[78] Fang, Z. G.; Xu, W. W.; Huang, T.; Li, M. L.; Wang, W. R.; Liu, Y. P.; Mao, C. C.; Meng, F. L.; Wang, M. J.; Cheng, M. H.; Yu, A. S.; Guo, X. H. Mater. Res. Bull. 2013, 48, 4419.
[79] Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Adv. Mater. 2007, 19, 4505.
[80] Zhou, G. M.; Li, L.; Zhang, Q.; Li, N.; Li, F. Phys. Chem. Chem. Phys. 2013, 15, 5582.
[81] Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Nano Res. 2013, 6, 167.
[82] Hassan, M. F.; Guo, Z. P.; Du, G. D.; Wexler. D.; Liu, H. K. Phys. Status Solidi A 2009, 206, 2546. Sun, F.; Huang, K.; Liu, Y. P.; Gao, T.; Han, Y. N.; Zhong, J. X. Appl. Surf. Sci. 2013, 266, 300.
Outlines

/