Review

Electrochemical Biosensing Based on Graphene Modified Electrodes

  • Yu Xiaowen ,
  • Sheng Kaixuan ,
  • Chen Ji ,
  • Li Chun ,
  • Shi Gaoquan
Expand
  • Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2013-08-12

  Online published: 2013-11-14

Supported by

Project supported by the National Basic Research Program of China (No. 2012CB933402) and the Natural Science Foundation of China (Nos. 91027028, 51161120361).

Abstract

Graphene has a unique atom-thick two-dimensional structure and excellent properties, including high conductivity and electron mobility at room temperature, large specific surface area, and excellent mechanical properties. Graphene also possesses a variety of promising electrochemical properties, such as a wide potential window, low charge-transfer resistance, high electrocatalytic activity and fast electron transfer rate. Furthermore, chemically modified graphene materials, particularly graphene oxide (GO) and reduced graphene oxide (rGO), can be produced in a large scale and at low costs. They have good processability and can be assembled, blended or fabricated into macroscopic electrode materials with controlled compositions and microstructures. Thus, graphene and its chemically modified derivatives are unique and attractive electrode materials for electrochemical biosensing. For example, GO is a chemically modified graphene and an important precursor of graphene. GO sheets have a large amount of carboxyl groups at their edges, which can be used to covalently immobilize enzymes, realizing the detection of biomolecules. GO can also enhance the direct charge transfer of protein because of its irreversible adsorption to protein and abundant catalytic sites. However, the oxygen functional groups of GO heavily destroy the conjugated planes of graphene sheets, decreasing the electrical property and limiting the practical applications of GO. Chemical, electrochemical, or thermal reduction can partly restore the conjugated structure, converting GO to conductive rGO. On the other hand, graphene is a material with zero band gap. Doping graphene with heteroatoms can modulate its band gap and improve its electrocatalytic properties. Graphene materials also frequently have to be blended with other functional materials to improve their dispersibility and processibility, enhance their electrochemical activity and/or selectivity. This review will summarize the recent research achievements in electrochemical biosensing based on the electrodes modified with pristine graphene (e.g. GO, rGO, and doped graphene) or graphene composites with biomolecules, polymers, ionic liquids, metal and metal oxide nanoparticles. A perspective of developments in this research field is also provided.

Cite this article

Yu Xiaowen , Sheng Kaixuan , Chen Ji , Li Chun , Shi Gaoquan . Electrochemical Biosensing Based on Graphene Modified Electrodes[J]. Acta Chimica Sinica, 2014 , 72(3) : 319 -332 . DOI: 10.6023/A13080848

References

[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.

[2] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.

[3] Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.-Z. J. Phys. Chem. C 2009, 113, 8853.

[4] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.

[5] Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.

[6] Huang, X.; Zeng, Z.; Fan, Z.; Liu, J.; Zhang, H. Adv. Mater. 2012, 24, 5979.

[7] Huang, C.; Li, C.; Shi, G. Energy Environ. Sci. 2012, 5, 8848.

[8] Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Angew. Chem., Int. Ed. 2010, 49, 2114.

[9] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.

[10] Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C. Langmuir 2010, 26, 1936.

[11] Zhou, M.; Zhai, Y.; Dong, S. Anal. Chem. 2009, 81, 5603.

[12] Liu, Y.; Dong, X.; Chen, P. Chem. Soc. Rev. 2012, 41, 2283.

[13] Si, Y.; Samulski, E. T. Nano Lett. 2008, 8, 1679.

[14] Artiles, M. S.; Rout, C. S.; Fisher, T. S. Adv. Drug Delivery Rev. 2011, 63, 1352.

[15] Wu, J.-F.; Xu, M.-Q.; Zhao, G.-C. Electrochem. Commun. 2010, 12, 175.

[16] Zeng, Q.; Cheng, J.-S.; Liu, X.-F.; Bai, H.-T.; Jiang, J.-H. Biosens. Bioelectron. 2011, 26, 3456.

[17] Zhang, Q.; Yang, S.; Zhang, J.; Zhang, L.; Kang, P.; Li, J.; Xu, J.; Zhou, H.; Song, X.-M. Nat. Nanotechnol. 2011, 22, 494010.

[18] Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Small 2013, 9, 1160.

[19] Ratinac, K. R.; Yang, W.; Gooding, J. J.; Thordarson, P.; Braet, F. Electroanalysis 2011, 23, 803.

[20] Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Biosens. Bioelectron. 2011, 26, 4637.

[21] Gan, T.; Hu, S. Microchim. Acta 2011, 175, 1.

[22] Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Electroanalysis 2010, 22, 1027.

[23] Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E. L. K.; Poh, H. L. Trac-trend. Anal. Chem. 2010, 29, 954.

[24] Pumera, M. Chem. Soc. Rev. 2010, 39, 4146.

[25] Chen, D.; Tang, L.; Li, J. Chem. Soc. Rev. 2010, 39, 3157.

[26] Brownson, D. A.; Banks, C. E. Analyst 2010, 135, 2768.

[27] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.

[28] Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L. Langmuir 2010, 26, 6158.

[29] Vincent, K. A.; Li, X.; Blanford, C. F.; Belsey, N. A.; Weiner, J. H.; Armstrong, F. A. Nat. Chem. Biol. 2007, 3, 761.

[30] Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Talanta 2010, 81, 754.

[31] Muti, M.; Sharma, S.; Erdem, A.; Papakonstantinou, P. Electroanalysis 2011, 23, 272.

[32] Huang, K.-J.; Niu, D.-J.; Sun, J.-Y.; Han, C.-H.; Wu, Z.-W.; Li, Y.-L.; Xiong, X.-Q. Colloids Surf. B 2011, 82, 543.

[33] Raj, M. A.; John, S. A. Anal. Chim. Acta 2013, 771, 14.

[34] Liu, J.; Kong, N.; Li, A.; Luo, X.; Cui, L.; Wang, R.; Feng, S. Analyst 2013, 138, 2567.

[35] Giovanni, M.; Bonanni, A.; Pumera, M. Analyst 2012, 137, 580.

[36] Wang, Z.; Zhang, J.; Chen, P.; Zhou, X.; Yang, Y.; Wu, S.; Niu, L.; Han, Y.; Wang, L.; Chen, P.; Boey, F.; Zhang, Q.; Liedberg, B.; Zhang, H. Biosens. Bioelectron. 2011, 26, 3881.

[37] Ma, X.; Chao, M.; Wang, Z. Anal. Methods 2012, 4, 1687.

[38] Alwarappan, S.; Joshi, R. K.; Ram, M. K.; Kumar, A. Appl. Phys. Lett. 2010, 96, 263702.

[39] Wang, Q.; Zheng, M.; Shi, J.; Gao, F.; Gao, F. Electroanalysis 2011, 23, 915.

[40] Nethravathi, C.; Rajamathi, M. Carbon 2008, 46, 1994.

[41] Mallesha, M.; Manjunatha, R.; Nethravathi, C.; Suresh, G. S.; Rajamathi, M.; Melo, J. S.; Venkatesha, T. V. Bioelectrochemistry 2011, 81, 104.

[42] Haque, A. M.; Park, H.; Sung, D.; Jon, S.; Choi, S.-Y.; Kim, K. Anal. Chem. 2012, 84, 1871.

[43] Ling, Y.-Y.; Huang, Q.-A.; Zhu, M.-S.; Feng, D.-X.; Li, X.-Z.; Wei, Y. J. Electroanal. Chem. 2013, 693, 9.

[44] Unnikrishnan, B.; Palanisamy, S.; Chen, S.-M. Biosens. Bioelectron. 2013, 39, 70.

[45] Dong, X.; Wang, X.; Wang, L.; Song, H.; Zhang, H.; Huang, W.; Chen, P. ACS Appl. Mater. Interfaces 2012, 4, 3129.

[46] Kim, Y.-R.; Bong, S.; Kang, Y.-J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H. Biosens. Bioelectron. 2010, 25, 2366.

[47] Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C. Electrochim. Acta 2010, 55, 8606.

[48] Zhou, C.; Kong, J.; Yenilmez, E.; Dai, H. Science 2000, 290, 1552.

[49] Cortes Arriagada, D. J. Mol. Model. 2013, 19, 919.

[50] Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R. Nano Lett. 2010, 10, 4975.

[51] Zhang, C.; Fu, L.; Liu, N.; Liu, M.; Wang, Y.; Liu, Z. Adv. Mater. 2011, 23, 1020.

[52] Fan, H.; Li, Y.; Wu, D.; Ma, H.; Mao, K.; Fan, D.; Du, B.; Li, H.; Wei, Q. Anal. Chim. Acta 2011, 711, 24.

[53] Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. ACS Nano 2010, 4, 1790.

[54] Sheng, Z.-H.; Zheng, X.-Q.; Xu, J.-Y.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Biosens. Bioelectron. 2012, 34, 125.

[55] Tan, S. M.; Poh, H. L.; Sofer, Z.; Pumera, M. Analyst 2013, 138, 4885.

[56] Li, X.-R.; Kong, F.-Y.; Liu, J.; Liang, T.-M.; Xu, J.-J.; Chen, H.-Y. Adv. Funct. Mater. 2012, 22, 1981.

[57] Li, X.-R.; Liu, J.; Kong, F.-Y.; Liu, X.-C.; Xu, J.-J.; Chen, H.-Y. Electrochem. Commun. 2012, 20, 109.

[58] Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S. Biosens. Bioelectron. 2005, 21, 984.

[59] Sorlier, P.; Denuziere, A.; Viton, C.; Domard, A. Biomacromolecules 2001, 2, 765.

[60] Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. Biosens. Bioelectron. 2009, 25, 901.

[61] Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Electrochem. Commun. 2009, 11, 889.

[62] Han, D.; Han, T.; Shan, C.; Ivaska, A.; Niu, L. Electroanalysis 2010, 22, 2001.

[63] Qiu, J.-D.; Huang, J.; Liang, R.-P. Sens. Actuators, B 2011, 160, 287.

[64] Zhou, Y.; Liu, S.; Jiang, H.-J.; Yang, H.; Chen, H.-Y. Electroanalysis 2010, 22, 1323.

[65] Xu, H.; Dai, H.; Chen, G. Talanta 2010, 81, 334.

[66] Freeman, R.; Finder, T.; Bahshi, L.; Willner, I. Nano Lett. 2009, 9, 2073.

[67] Tan, L.; Zhou, K.-G.; Zhang, Y.-H.; Wang, H.-X.; Wang, X.-D.; Guo, Y.-F.; Zhang, H.-L. Electrochem. Commun. 2010, 12, 557.

[68] Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E. ACS Nano 2010, 4, 4001.

[69] Lv, W.; Guo, M.; Liang, M.-H.; Jin, F.-M.; Cui, L.; Zhi, L.; Yang, Q.-H. J. Mater. Chem. 2010, 20, 6668.

[70] Zhang, Q.; Qiao, Y.; Hao, F.; Zhang, L.; Wu, S.; Li, Y.; Li, J.; Song, X.-M. Chem. Eur. J. 2010, 16, 8133.

[71] Lv, W.; Jin, F.-M.; Guo, Q.; Yang, Q.-H.; Kang, F. Electrochim. Acta 2012, 73, 129.

[72] Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Adv. Mater. 2009, 21, 3159.

[73] Li, C.; Shi, G. Electrochim. Acta 2011, 56, 10737.

[74] Bai, H.; Li, C.; Shi, G. Adv. Mater. 2011, 23, 1089.

[75] Alwarappan, S.; Liu, C.; Kumar, A.; Li, C.-Z. J. Phys. Chem. C 2010, 114, 12920.

[76] Scott, C. L.; Zhao, G.; Pumera, M. Electrochem. Commun. 2010, 12, 1788.

[77] Zhuang, Z.; Li, J.; Xu, R.; Xiao, D. Int. J. Electrochem. Sci. 2011, 6, 2149.

[78] Bo, Y.; Yang, H.; Hu, Y.; Yao, T.; Huang, S. Electrochim. Acta 2011, 56, 2676.

[79] Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Chem. Commun. 2009, 1667.

[80] Liu, Q.; Zhu, X.; Huo, Z.; He, X.; Liang, Y.; Xu, M. Talanta 2012, 97, 557.

[81] Shen, Y.; Zhang, Y.; Qiu, X.; Guo, H.; Niu, L.; Ivaska, A. Green Chem. 2007, 9, 746.

[82] Yang, F.; Jiao, L.; Shen, Y.; Xu, X.; Zhang, Y.; Niu, L. J. Electroanal. Chem. 2007, 608, 78.

[83] Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Chem. Commun. 2009, 3880.

[84] Liao, H.-g.; Wu, H.; Wang, J.; Liu, J.; Jiang, Y.-X.; Sun, S.-G.; Lin, Y. Electroanalysis 2010, 22, 2297.

[85] Liu, K.; Zhang, J.; Yang, G.; Wang, C.; Zhu, J.-J. Electrochem. Commun. 2010, 12, 402.

[86] Qiu, Y.; Qu, X.; Dong, J.; Ai, S.; Han, R. J. Hazard. Mater. 2011, 190, 480.

[87] Wu, J.-W.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. Biosens. Bioelectron. 2013, 46, 30.

[88] Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Anal. Chem. 2009, 81, 2378.

[89] Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Biosens. Bioelectron. 2010, 25, 1504.

[90] Niu, X.; Yang, W.; Guo, H.; Ren, J.; Gao, J. Biosens. Bioelectron. 2013, 41, 225.

[91] Welch, C. M.; Compton, R. G. Anal. Bioanal. Chem.2006, 384, 601.

[92] Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Biosens. Bioelectron. 2010, 25, 1070.

[93] Hong, W.; Bai, H.; Xu, Y.; Yao, Z.; Gu, Z.; Shi, G. J. Phys. Chem. C 2010, 114, 1822.

[94] Xiao, F.; Song, J.; Gao, H.; Zan, X.; Xu, R.; Duan, H. ACS Nano 2012, 6, 100.

[95] Wang, Z.; Zhang, J.; Yin, Z.; Wu, S.; Mandler, D.; Zhang, H. Nanoscale 2012, 4, 2728.

[96] Liu, S.; Yan, J.; He, G.; Zhong, D.; Chen, J.; Shi, L. Y.; Zhou, X.; Jiang, H. J. Electroanal. Chem. 2012, 672, 40.

[97] Chen, Y.; Li, Y.; Sun, D.; Tian, D.; Zhang, J.; Zhu, J.-J. J. Mater. Chem. 2011, 21, 7604.

[98] Du, M.; Yang, T.; Jiao, K. J. Mater. Chem. 2010, 20, 9253.

[99] Zheng, J.; He, Y.; Sheng, Q.; Zhang, H. J. Mater. Chem. 2011, 21, 12873.

[100] Xia, Q.; Luo, D.; Li, Z. Acta Chim. Sinica 2012, 70, 2079. (夏前芳, 罗丹, 李在均, 化学学报, 2012, 70, 2079.)

[101] Zhang, Q.; Wu, S.; He, M.; Zhang, L.; Liu, Y.; Li, J.; Song, X.-M. Acta Chim. Sinica 2012, 70, 2213. (张谦, 吴抒遥, 何茂伟, 张玲, 刘洋, 李景虹, 宋溪明, 化学学报, 2012, 70, 2213.)

[102] Xia, Q.; Huang, Y.; Yang, X.; Li, Z. Acta Chim. Sinica 2012, 70, 1315. (夏前芳, 黄颖娟, 杨雪, 李在均, 化学学报, 2012, 70, 1315.)

[103] Lu, W.; Luo, Y.; Chang, G.; Sun, X. Biosens. Bioelectron. 2011, 26, 4791.

[104] Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. ACS Nano 2010, 4, 3959.

[105] Wu, H.; Wang, J.; Kang, X.; Wang, C.; Wang, D.; Liu, J.; Aksay, I. A.; Lin, Y. Talanta 2009, 80, 403.

[106] Sun, C.-L.; Lee, H.-H.; Yang, J.-M.; Wu, C.-C. Biosens. Bioelectron. 2011, 26, 3450.

[107] Lu, L.-M.; Li, H.-B.; Qu, F.; Zhang, X.-B.; Shen, G.-L.; Yu, R.-Q. Biosens. Bioelectron. 2011, 26, 3500.

[108] Wang, Q.; Cui, X.; Chen, J.; Zheng, X.; Liu, C.; Xue, T.; Wang, H.; Jin, Z.; Qiao, L.; Zheng, W. RSC Adv. 2012, 2, 6245.

[109] You, J.-M.; Kim, D.; Kim, S. K.; Kim, M.-S.; Han, H. S.; Jeon, S. Sens. Actuators, B 2013, 178, 450.

[110] Wang, X.; Wu, M.; Tang, W.; Zhu, Y.; Wang, L.; Wang, Q.; He, P.; Fang, Y. J. Electroanal. Chem. 2013, 695, 10.

[111] Pingarron, J. M.; Yanez-Sedeno, P.; Gonzalez-Cortes, A. Electrochim. Acta 2008, 53, 5848.

[112] Lu, J.; Do, I.; Drzal, L. T.; Worden, R. M.; Lee, I. ACS Nano 2008, 2, 1825.

[113] Lim, S. H.; Wei, J.; Lin, J.; Li, Q.; You, J. K. Biosens. Bioelectron. 2005, 20, 2341.

[114] Fan, Y.; Lu, H.-T.; Liu, J.-H.; Yang, C.-P.; Jing, Q.-S.; Zhang, Y.-X.; Yang, X.-K.; Huang, K.-J. Colloids Surf. B 2011, 83, 78.

[115] Fan, Y.; Liu, J.-H.; Lu, H.-T.; Zhang, Q. Colloids Surf. B 2011, 85, 289.

[116] Jang, H. D.; Kim, S. K.; Chang, H.; Roh, K. M.; Choi, J. W.; Huang, J. Biosens. Bioelectron. 2012, 38, 184.

[117] Yang, A.; Xue, Y.; Zhang, Y.; Zhang, X.; Zhao, H.; Li, X.; He, Y.; Yuan, Z. J. Mater. Chem. B 2013, 1, 1804.

[118] Sun, W.; Wang, X.; Wang, Y.; Ju, X.; Xu, L.; Li, G.; Sun, Z. Electrochim. Acta 2013, 87, 317.

[119] Palanisamy, S.; Vilian, A. T. E.; Chen, S.-M. Int. J. Electrochem. Sci. 2012, 7, 2153.

[120] Xie, L.; Xu, Y.; Cao, X. Colloids Surf. B 2013, 107, 245.

[121] Ensafi, A. A.; Jafari-Asl, M.; Rezaei, B. Talanta 2013, 103, 322.

[122] Liu, M.; Liu, R.; Chen, W. Biosens. Bioelectron. 2013, 45, 206.

[123] Xiao, F.; Li, Y.; Gao, H.; Ge, S.; Duan, H. Biosens. Bioelectron. 2013, 41, 417.

[124] Huang, T.-Y.; Huang, J.-H.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W. Biosens. Bioelectron. 2013, 43, 173.

[125] Mani, V.; Devadas, B.; Chen, S.-M. Biosens. Bioelectron. 2013, 41, 309.

[126] Sun, C.-L.; Chang, C.-T.; Lee, H.-H.; Zhou, J.; Wang, J.; Sham, T.-K.; Pong, W.-F. ACS Nano 2011, 5, 7788.

[127] Chen, J.; Zhao, L.; Bai, H.; Shi, G. J. Electroanal. Chem. 2011, 657, 34.

[128] Wu, L.; Feng, L.; Ren, J.; Qu, X. Biosens. Bioelectron. 2012, 34, 57.

[129] Zeng, G.; Xing, Y.; Gao, J.; Wang, Z.; Zhang, X. Langmuir 2010, 26, 15022.

[130] Melde, B. J.; Johnson, B. J. Anal. Bioanal. Chem. 2010, 398, 1565.

Outlines

/