Review

Application of Crystal Growth Theory in Graphene CVD Nucleation and Growth

  • Wang Lu ,
  • Gao Junfeng ,
  • Ding Feng
Expand
  • a Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China;
    b Beijing Computational Science Research Center, Beijing 100084

Received date: 2013-09-18

  Online published: 2013-11-14

Abstract

Graphene is a star material due to its intriguing electronic, mechanical, thermal and chemical properties and many potential applications. For most of these potential applications, the synthesis of high-quality graphene layers in large scale is highly desired. In the past 10 years, many methods of synthesizing graphene have been developed and explored extensively. Among them, transition metal (TM)-catalyzed chemical vapor deposition (CVD) method stands out for its numerous advantages. As a typical two-dimensional crystal, the growth of graphene must follow the classical crystal growth theory. Here, we introduce three aspects of graphene CVD growth mechanism based on the classical crystal growth theory and the density functional theory (DFT) calculations. (1) The nucleation process and nucleation rate of graphene on metal terrace and near a step edge. On the basis of the predicated very large nucleation barrier, we have proposed a strategy of using the seeded growth method to grow large-area single crystal graphene. (2) Application of Wulff construction in graphene CVD growth. Based on the investigations of graphene edge structures on metal surface and their formation energies, the equilibrium structures of graphene island can be determined by the theory of Wulff construction. (3) The application of kinetic Wulff construction in graphene CVD growth. A detailed investigation on the structural stability and growth kinetics of graphene on the Cu(111) surface have been systematically investigated. According to the kinetic Wulff construction, the armchair edge which growth fast will gradually disappear and the zigzag edges which grows slowly will eventually dominate the circumference of a growing graphene island. The above discussions and conclusions lead to a deep insight into the CVD graphene growth, which are expected to guide the experimental design of growing large-scale graphene with high-quality.

Cite this article

Wang Lu , Gao Junfeng , Ding Feng . Application of Crystal Growth Theory in Graphene CVD Nucleation and Growth[J]. Acta Chimica Sinica, 2014 , 72(3) : 345 -358 . DOI: 10.6023/A13090984

References

[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.

[2] Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109.

[3] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.

[4] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.

[5] Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.

[6] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.

[7] Gusynin, V. P.; Sharapov, S. G. Phys. Rev. Lett. 2005, 95, 146801.

[8] Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. Nature 2010, 467, 305.

[9] Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. Nature 2011, 474, 64.

[10] Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photon. 2010, 4, 611.

[11] Won, R. Nat. Photon. 2010, 4, 411.

[12] Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J.-H. Nano Lett. 2010, 10, 490.

[13] Liao, L.; Bai, J.; Cheng, R.; Lin, Y.-C.; Jiang, S.; Qu, Y.; Huang, Y.; Duan, X. Nano Lett. 2010, 10, 3952.

[14] Rumyantsev, S.; Liu, G.; Shur, M. S.; Potyrailo, R. A.; Balandin, A. A. Nano Lett. 2012, 12, 2294.

[15] Schwierz, F. Nat. Nanotechnol. 2010, 5, 487.

[16] Gu, T.; Petrone, N.; McMillan, J. F.; van der Zande, A.; Yu, M.; Lo, G. Q.; Kwong, D. L.; Hone, J.; Wong, C. W. Nat. Photon. 2012, 6, 554.

[17] Trauzettel, B.; Bulaev, D. V.; Loss, D.; Burkard, G. Nat. Phys. 2007, 3, 192.

[18] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.

[19] Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Science 2008, 320, 356.

[20] Yuan, Q.; Hu, H.; Gao, J.; Ding, F.; Liu, Z.; Yakobson, B. I. J. Am. Chem. Soc. 2011, 133, 16072.

[21] Tian, L.; Wei, X.; Zhuang, Q.; Zong, Z.; Sun, S. Acta Chim. Sinica 2013, 71, 1270. (田雷雷, 魏贤勇, 庄全超, 宗志敏, 孙世刚, 化学学报, 2013, 71, 1270.)

[22] Xia, Q.; Huang, Y.; Yang, X.; Li, Z. Acta Chim. Sinica 2012, 70, 1315. (夏前芳, 黄颖娟, 杨雪, 李在均, 化学学报, 2012, 70, 1315.)

[23] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.

[24] Geim, A. K. Science 2009, 324, 1530.

[25] Segal, M. Nat. Nanotechnol. 2009, 4, 612.

[26] Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T. Nat. Mater. 2009, 8, 203.

[27] Sutter, P. Nat. Mater. 2009, 8, 171.

[28] Virojanadara, C.; Syväjarvi, M.; Yakimova, R.; Johansson, L. I.; Zakharov, A. A.; Balasubramanian, T. Phys. Rev. B 2008, 78, 245403.

[29] Riedl, C.; Coletti, C.; Starke, U. J. Phys. D: Appl. Phys. 2010, 43, 374009.

[30] Fang, N.; Liu, F.; Liu, X.; Liao, R.; Miu, L.; Jiang, J. Acta Chim. Sinica 2012, 70, 2197. (方楠, 刘风, 刘小瑞, 廖瑞娴, 缪灵, 江建军, 化学学报, 2012, 70, 2197.)

[31] Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1, 73.

[32] Dai, B.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y.; Liu, Z. Nano Res. 2011, 4, 434.

[33] Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Nat. Chem. 2010, 2, 581.

[34] Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217.

[35] Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872.

[36] Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Nature 2009, 458, 877.

[37] Wintterlin, J.; Bocquet, M. L. Surf. Sci. 2009, 603, 1841.

[38] Robin, J.; Ashokreddy, A.; Vijayan, C.; Pradeep, T. Nanotechnology 2011, 22, 165701.

[39] Vinogradov, N. A.; Zakharov, A. A.; Kocevski, V.; Rusz, J.; Simonov, K. A.; Eriksson, O.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Martensson, N.; Preobrajenski, A. B. Phys. Rev. Lett. 2012, 109, 026101.

[40] Eom, D.; Prezzi, D.; Rim, K. T.; Zhou, H.; Lefenfeld, M.; Xiao, S.; Nuckolls, C.; Hybertsen, M. S.; Heinz, T. F.; Flynn, G. W. Nano Lett. 2009, 9, 2844.

[41] Varykhalov, A.; Rader, O. Phys. Rev. B 2009, 80, 035437.

[42] Cheng, D.; Barcaro, G.; Charlier, J.-C.; Hou, M.; Fortunelli, A. J. Phys. Chem. C 2011, 115, 10537.

[43] Liu, X.; Fu, L.; Liu, N.; Gao, T.; Zhang, Y.; Liao, L.; Liu, Z. J. Phys. Chem. C 2011, 115, 11976.

[44] Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C.; Badmaev, A.; Zhou, C. J. Phys. Chem. Lett. 2010, 1, 3101.

[45] Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Phys. Rev. Lett. 2008, 100, 107602.

[46] Starodub, E.; Maier, S.; Stass, I.; Bartelt, N. C.; Feibelman, P. J.; Salmeron, M.; McCarty, K. F. Phys. Rev. B 2009, 80, 235422.

[47] Zhang, H.; Fu, Q.; Cui, Y.; Tan, D.; Bao, X. J. Phys. Chem. C 2009, 113, 8296.

[48] Cui, Y.; Fu, Q.; Zhang, H.; Bao, X. Chem. Commun. 2011, 47, 1470.

[49] Lacovig, P.; Pozzo, M.; Alfè, D.; Vilmercati, P.; Baraldi, A.; Lizzit, S. Phys. Rev. Lett. 2009, 103, 166101.

[50] Johann, C.; Alpha, T. N. D.; Martin, E.; Carsten, B.; Dirk, W.; Niemma, B.; Frank, J. M. Z. H.; Raoul van, G.; Bene, P.; Thomas, M. New J. Phys. 2009, 11, 023006.

[51] Nie, S.; Walter, A. L.; Bartelt, N. C.; Starodub, E.; Bostwick, A.; Rotenberg, E.; McCarty, K. F. ACS Nano 2011, 5, 2298.

[52] Coraux, J.; NDiaye, A. T.; Busse, C.; Michely, T. Nano Lett. 2008, 8, 565.

[53] Alpha, T. N. D.; Johann, C.; Tim, N. P.; Carsten, B.; Thomas, M. New J. Phys. 2008, 10, 043033.

[54] Gao, L.; Guest, J. R.; Guisinger, N. P. Nano Lett. 2010, 10, 3512.

[55] Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Nano Lett. 2011, 11, 4547.

[56] Wesep, R. G. V.; Chen, H.; Zhu, W.; Zhang, Z. J. Chem. Phys. 2011, 134, 171105.

[57] Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. ACS Nano 2012, 6, 3614.

[58] Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80, 245411.

[59] Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Appl. Phys. Lett. 2011, 98, 033101.

[60] Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.

[61] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Özyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574.

[62] Dai, B.; Fu, L.; Zou, Z.; Wang, M.; Xu, H.; Wang, S.; Liu, Z. Nat. Commun. 2011, 2, 522.

[63] Cui, Y.; Gao, J.; Jin, L.; Zhao, J.; Tan, D.; Fu, Q.; Bao, X. Nano Res. 2012, 5, 352.

[64] Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu, Q.; Peng, L.-M.; Bao, X.; Cheng, H.-M. Nat. Commun. 2012, 3, 699.

[65] Yuan, Q.; Gao, J.; Shu, H.; Zhao, J.; Chen, X.; Ding, F. J. Am. Chem. Soc. 2011, 134, 2970.

[66] Gao, J.; Yuan, Q.; Hu, H.; Zhao, J.; Ding, F. J. Phys. Chem. C 2011, 115, 17695.

[67] Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. J. Am. Chem. Soc. 2011, 133, 5009.

[68] Gao, J.; Zhao, J.; Ding, F. J. Am. Chem. Soc. 2012, 134, 6204.

[69] Shu, H.; Chen, X.; Tao, X.; Ding, F. ACS Nano 2012, 6, 3243.

[70] Wang, B.; Ma, X.; Caffio, M.; Schaub, R.; Li, W.-X. Nano Lett. 2011, 11, 424.

[71] Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. New J. Phys. 2008, 10, 093026.

[72] Markov, I. V., Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Singapore, 2003.

[73] Saadi, S.; Abild-Pedersen, F.; Helveg, S.; Sehested, J.; Hinnemann, B.; Appel, C. C.; Norskov, J. K. J. Phys. Chem. C 2010, 114, 11221.

[74] Mohanty, N.; Moore, D.; Xu, Z.; Sreeprasad, T. S.; Nagaraja, A.; Rodriguez, A. A.; Berry, V. Nat. Commun. 2012, 3, 844.

[75] Amara, H.; Roussel, J. M.; Bichara, C.; Gaspard, J. P.; Ducastelle, F. Phys. Rev. B 2009, 79, 014109.

[76] Wu, P.; Jiang, H.; Zhang, W.; Li, Z.; Hou, Z.; Yang, J. J. Am. Chem. Soc. 2012, 134, 6045.

[77] Van Wesep, R. G.; Chen, H.; Zhu, W.; Zhang, Z. J. Chem. Phys. 2011, 134, 171105.

[78] Koskinen, P.; Malola, S.; Häkkinen, H. Phys. Rev. Lett. 2008, 101, 115502.

[79] Biró, L. P.; Lambin, P. Carbon 2010, 48, 2677.

[80] Koskinen, P.; Malola, S.; Häkkinen, H. Phys. Rev. B 2009, 80, 073401.

[81] Ivanovskaya, V. V.; Zobelli, A.; Wagner, P.; Heggie, M. I.; Briddon, P. R.; Rayson, M. J.; Ewels, C. P. Phys. Rev. Lett. 2011, 107, 065502.

[82] Kroes, J. M. H.; Akhukov, M. A.; Los, J. H.; Pineau, N.; Fasolino, A. Phys. Rev. B 2011, 83, 165411.

[83] Gao, J.; Zhang, J.; Liu, H.; Zhang, Q.; Zhao, J. Nanoscale 2013, 5, 9785.

[84] Gao, J.; Zhao, J. Sci. Rep. 2012, 2, 861.

[85] Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Phys. Rev. Lett. 2012, 108, 155501.

[86] Liu, Y.; Bhowmick, S.; Yakobson, B. I. Nano Lett. 2011, 11, 3113.

[87] Ji, Q.; Zhang, Y.; Gao, T.; Zhang, Y.; Ma, D.; Liu, M.; Chen, Y.; Qiao, X.; Tan, P.-H.; Kan, M.; Feng, J.; Sun, Q.; Liu, Z. Nano Lett. 2013, 13, 3870.

[88] Cahangirov, S.; Topsakal, M.; Aktürk, E.; ?ahin, H.; Ciraci, S. Phys. Rev. Lett. 2009, 102, 236804.

Outlines

/