Lithium Storage Characteristics and Possible Applications of Graphene Materials
Received date: 2013-09-19
Online published: 2013-12-17
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51172242, 51221264) and "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDA01020304).
Graphene materials are materials with a flat mono/few layer of carbon atoms tightly packed to a two-dimensional honeycomb lattice. Graphene materials are expected to be applied in lithium ion batteries due to their unique structural, mechanical and electrical properties. As an anode material, the charge/discharge characteristics of graphene materials is similar to those of low-temperature soft carbon materials, such as high capacity, low initial efficiency and large voltage hysteresis. Although attractive results have been achieved for graphene as anode materials for LIBs, detailed lithium storage mechanisms are still not clear. The effects of the following several structural parameters including disorder degree, surface area, micropores, interlayer spacing, C/O ratio and layer number on the lithium storage properties are discussed. Thermally reduced graphene materials with a highly disordered structure and high surface area has exceptionally high reversible capacity. Micropores in graphene materials have a great impact on their electrochemical performance. Although these micropores can provide additional sites for increased reversible lithium storage, it can also results in severe capacity fading and voltage hysteresis. Oxygen functional groups and larger interlayer spacing may provide higher reversible capacity of graphene, but the micropores and defect-based reversible storage may be the main contribution. Effect of layer number on lithium storage mechanisms of graphene and the conclusion are still in debate. Graphene with rich oxygen functional groups is a promising cathode material with high capacity and rate performance for lithium storage. High specific capacity of graphene cathode is mainly ascribed to lithiation reaction of oxygen functional groups, such as epoxide and carbonyl groups. Lithiation of oxygen functional groups still requires further study for a full understanding. Based on the lithium storage characteristics of graphene anode and cathode, lithium ion capacitors with high energy density and graphene composite cathode materials for lithium ion batteries may be designed and developed in the future. Graphene based lithium ion capacitors facilitate the reversible lithium storage, which significantly improves the energy density of lithium ion capacitors compared to those of conventional systems based on activated carbon. LiFePO4 modified with graphene layers has reached 208 mAh/g in specific capacity. The excess capacity is attributed to the reversible reduction-oxidation reaction between the lithium ions of the electrolyte and the exfoliated graphene flakes.
Wen Lei , Liu Chengming , Song Rensheng , Luo Hongze , Shi Ying , Li Feng , Cheng Huiming . Lithium Storage Characteristics and Possible Applications of Graphene Materials[J]. Acta Chimica Sinica, 2014 , 72(3) : 333 -344 . DOI: 10.6023/A13090986
[1] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 1476.
[2] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.
[3] Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2012, 1, 107.
[4] Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Prog. Mater. Sci. 2011, 56, 1178.
[5] Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Energy Environ. Sci. 2013, 6, 1388.
[6] Lian, P. C.; Zhu, X. F.; Liang, S. Z.; Li, Z.; Yang, W. S.; Wang, H. H. Electrochim. Acta 2010, 55, 3909.
[7] Shao, Y. Y.; Wang, J.; Engelhard, M.; Wang, C. M.; Lin, Y. H. J. Mater. Chem. 2010, 20, 743.
[8] Wang, D. W.; Sun, C. H.; Zhou, G. M.; Li, F.; Wen, L.; Donose, B. C.; Lu, G. Q.; Cheng, H. M.; Gentle, I. R. J. Mater. Chem. A 2013, 1, 3607.
[9] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[10] Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; Deheer, W. A. J. Phys. Chem. B 2004, 108, 19912.
[11] Sutter, P. W.; Flege, J.; Sutter, E. A. Nat. Mater. 2008, 7, 406.
[12] Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30.
[13] Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim. P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.
[14] Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
[15] Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balarkrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nat. Nanotech. 2010, 5, 574.
[16] Park, S.; Ruoff, R. S. Nat. Nanotech. 2009, 4, 217.
[17] Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. J. Phys. Chem. B 1998, 102, 4477.
[18] He, H. Y.; Klinowski, J.; Forster, M. Chem. Phys. Lett. 1998, 287, 53.
[19] Gomez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuivilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Nano Lett. 2010, 10, 1144.
[20] Bagri, A.; Mattevi, C.; Acik, M.; Chabai, Y. J.; Chhowalla, M.; Shenoy, V. B. Nat. Chem. 2010, 2, 581.
[21] Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Carbon 2009, 47, 2049.
[22] Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Science 1995, 270, 590.
[23] Azuma, H.; Imoto, H.; Yamada, S.; Sekai, K. J. Power Sources 1999, 81, 1.
[24] Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Carbon 2000, 38, 183.
[25] Yoshio, M.; Wang, H. Y.; Fukuda, K. Angew. Chem. Int. Ed. 2003, 115, 4335.
[26] Wu, Y. S.; Wang, Y. H.; Lee, Y. H. J. Alloys Compd. 2006, 426, 218.
[27] Zhou, Y. F.; Xie, S.; Chen, C. H. Electrochim. Acta 2005, 50, 4728.
[28] Ohzuku, T.; Iwakoshi, Y.; Sawai, K. J. Electrochem. Soc. 1993, 140, 2490.
[29] Kuribayashi, I.; Yokoyama, M.; Yamashita, M. J. Power Sources 1995, 54, 1.
[30] Xing, W.; Xue, J. S.; Dahn, J. R. J. Electrochem. Soc. 1996, 143, 3046.
[31] Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Adv. Mater. 1998, 10, 725.
[32] Kong, F.; Kostecki, R.; Nadeau, G.; Song, X.; Zaghib, K.; Kinoshita, K.; Mclarnon, F. J. Power Sources 2001, 97, 58.
[33] Mochida, I.; Ku, C. H.; Yoon, S. H.; Korai, Y. J. Power Sources 1998, 75, 214.
[34] Guo, P.; Song, H. H.; Chen, X. H. Electrochem. Commun. 2009, 11, 1320.
[35] Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Nano Lett. 2008, 8, 2277.
[36] Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Chem. Mater. 2009, 21, 3136.
[37] Wang, L. J.; Ren, Z. Y.; Wang, H.; Wang, G.; Tong, X.; Gao, S. H.; Bai, J. T. Diamond Relat. Mater. 2011, 20, 756.
[38] Vargas, O. A.; Caballero, A.; Morales, J. Nanoscale 2012, 4, 2083.
[39] Cai, D. D.; Wang, S. Q.; Lian, P. C.; Zhu, X. F.; Li, D. D.; Yang, W. S.; Wang, H. H. Electrochim. Acta 2013, 90, 492.
[40] Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. ACS Nano 2010, 4, 3187.
[41] Cheekati, S. L.; Yao, Z.; Huang, H. J. Nanomater. 2012, 819350.
[42] Chen, P.; Guo, L.; Wang, Y. J. Power Sources 2013, 222, 526.
[43] Chen, S. Q.; Bao, P.; Wan, G. X. Nano Energy 2013, 2, 425.
[44] Chen, S. Q.; Wang, Y. J. Mater. Chem. 2010, 20, 9735.
[45] Fu, Y. S.; Wan, Y. H.; Xia, H.; Wang, X. J. Power Sources 2012, 213, 338.
[46] He, Y. S.; Bai, D. W.; Yang, X. W.; Chen, J.; Liao, X. Z.; Ma, Z. F. Electrochem. Commun. 2010, 12, 570.
[47] Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. Electrochim. Acta 2011, 56, 2306.
[48] Zhu, Y. Q.; Li, C.; Cao, C. B. RSC Adv. 2013, 3, 11860.
[49] Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. J. Phys. Chem. C 2010, 114, 12800.
[50] Bai, S.; Chen, S. Q.; Shen, X. P.; Zhu, G. X.; Wang, G. X. RSC Adv. 2012, 2, 10977.
[51] Zheng, Y. X.; Xie, J.; Liu, S. Y.; Song, W. T.; Cao, G. S.; Zhu, T. J.; Zhao, X. B. J. Power Sources 2012, 202, 276.
[52] Wang, G. X.; Wang, B.; Wang, X. L.; Park, J.; Dou, S. X.; Ahn, H.; Kim, K. J. Mater. Chem. 2009, 19, 8378.
[53] Fan, Z. J.; Yan, J.; Ning, G. Q.; Wei, T.; Zhi, L. J.; Wei, F. Carbon 2013, 60, 558.
[54] Pollak, E.; Geng, B. S.; Jeon, K. J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R. Nano Lett. 2010, 10, 3386.
[55] Wu, Y. P.; Wan, C. R.; Jiang, C. Y.; Fang, S. B.; Jiang, Y. Y. Carbon 1999, 37, 1901.
[56] Ning, G. Q.; Fan, Z. J.; Wang, G.; Gao, J. S.; Qian, W. Z.; Wei, F. Chem. Commun. 2011, 47, 5976.
[57] Dahn, J. R., Sleigh, A. K.; Shi, H.; Reimers, J. N.; Zhong, Q.; Way, B. M. Electrochim. Acta 1993, 38, 1179.
[58] Zheng, T.; Dahn, J. R. Synth. Met. 1995, 73, 1.
[59] Papanek, P., Radosavljevic, M.; Fischer, J. E. Chem. Mater. 1996, 8, 1519.
[60] Zheng, T., McKinnon, W. R.; Dahn, J. R. J. Electrochem. Soc. 1996, 143, 2137.
[61] Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. Angew. Chem., Int. Ed. 2012, 51, 5147.
[62] Weydanz, W. J.; Way, B. M.; Vanbuuren, T.; Dahn, J. R. J. Electrochem. Soc. 1994, 141, 900.
[63] Way, B. M.; Dahn, J. R. J. Electrochem. Soc. 1994, 141, 907.
[64] Reddy, A. M.; Srivastava, A.; Gowda, S. R.; Gullapali, H.; Dubey, M.; Ajayan, P. M. ACS Nano 2010, 4, 6337.
[65] Wang, H. B.; Zhang, C. J.; Liu, Z. H.; Wang, L.; Han, P. X.; Xu, H. X.; Zhang, K. J.; Dong, S. M.; Yao, J. H.; Cui, G. L. J. Mater. Chem. 2011, 21, 5430.
[66] Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. ACS Nano 2011, 5, 5463.
[67] Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77, 23.
[68] Khantha, M.; Cordero, N. A.; Molina, L. M.; Alonso, J. A.; Girifalco, L. A. Phys. Rev. B 2004, 70, 12.
[69] Ferre-Vilaplana, A. J. Phys. Chem. C 2008, 112, 3998.
[70] Ataca, C.; Akturk, E.; Ciraci, S.; Ustunel, H. Appl. Phys. Lett. 2008, 93, 043123-3.
[71] Fan, X. F.; Zheng, W. T.; Kuo, J. L. ACS Appl. Mater. Int. 2012, 4, 2432.
[72] Uthaisar, C.; Barone, V. Nano Lett. 2010, 10, 2838.
[73] Gerouki, A.; Goldner, M. A.; Goldner, R. B.; Haas, T. E.; Liu, T. Y.; Slaven, S. J. Electrochem. Soc. 1996, 143, L262.
[74] Yao, F.; Gunes, F.; Ta, H. Q.; Lee, S. M.; Chae, S. J.; Sheem, K. Y.; Cojocaru, C. S.; Xie, S. S.; Lee, Y. H. J. Am. Chem. Soc. 2012, 134, 8646.
[75] Gao, S. H.; Ren, Z. Y.; Wan, L. J.; Zheng, J. M.; Guo, P.; Zhou, Y. X. Appl. Surf. Sci. 2011, 257, 7443.
[76] Zhao, Y. C.; Dai, Z. H.; Sui, P. F.; Wang, W. T. Sci. Sin-Phys. Mech. Astron. 2013, 43, 1052. (赵银昌, 戴振宏, 隋鹏飞, 王伟田, 中国科学: 物理学 力学 天文学, 2013, 43, 1052.)
[77] Stournara, M. E.; Shenoy, V. B. J. Power Sources 2011, 196, 5697.
[78] Kim, H.; Lim, H. D.; Kim, S. W.; Hong, J.; Seo, D. H.; Kim, D. C.; Jeon, S.; Park, S.; Kang, K. Sci. Rep. 2013, 3, 1.
[79] Byon, H. R.; Gallant, B. M.; Lee, S. W.; Yang, S. H. Adv. Funct. Mater. 2013, 23, 1037.
[80] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
[81] Wu, Z. S.; Wang, D. W.; Ren, W. C.; Zhao, J. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Adv. Funct. Mater. 2010, 20, 3595.
[82] Tian, L. L.; Wei, X. Y.; Zhuang, Q. C.; Zong, Z. M.; Sun, S. G. Acta Chim. Sinica 2013, 71, 1270. (田雷雷, 魏贤勇, 庄全超, 宗志敏, 孙世刚, 化学学报, 2013, 71, 1270.)
[83] Zhou, G. M.; Wang, D. W.; Yin, L. C.; Li, N.; Li, F.; Cheng, H. M. ACS Nano 2012, 6, 3214.
[84] Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I. A.; Liu, J. ACS Nano 2009, 3, 907.
[85] Shi, Y.; Wen, L.; Li, F.; Cheng, H. M. J. Power Sources 2011, 196, 8610.
[86] Goodenough, J. B. Acc. Chem. Res. 2013, 46, 1053.
[87] Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H. M. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17360.
[88] Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Casalongue, H. S.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. Angew. Chem., Int. Ed. 2011, 50, 7364.
[89] Kucinskis, G.; Bajars, G.; Kleperis, J. J. Power Sources 2013, 240, 66.
[90] Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Nat. Commun. 2013, 4, 1687.
[91] Amatucci, G. G.; Badway, F.; DuPasquire, A.; Zheng, T. J. Electrochem. Soc. 2001, 14, A930.
[92] DuPasquier, A.; Plize, I.; Gural, J.; Badway, F.; Amatucci, G. G. J. Power Sources 2004, 136, 160.
[93] Khomenko, V.; Raymundo-Pinero, E.; Beguin, F. J. Power Sources 2008, 177, 643.
[94] Jang, B. Z.; Liu, C. G.; Neff, D.; Yu, Z. N.; Wang, M. C.; Xiong, W.; Zhamu, A. Nano Lett. 2011, 11, 3785.
[95] Zhamu, A.; Chen, G. R.; Liu, C. G.; Neff, D.; Fang, Q.; Yu, Z. N.; Xiong, W.; Wang, Y. B.; Wang, X. Q.; Jang, B. Z. Energy Environ. Sci. 2012, 5, 5701.
[96] Zhang, F.; Zhang, T. F.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. S. Energy Environ. Sci. 2013, 6, 1623.
[97] Lee, J. H.; Shin, W. H.; Ryon, M. H.; Jin, J. K.; Kim, J.; Choi, J. W. ChemSusChem 2012, 5, 2328.
[98] Wen, L.; Song, R. S.; Shi, Y.; Li, F.; Cheng, H. M. Chin. Sci. Bull. 2013, 58, 3157. (闻雷, 宋仁升, 石颖, 李峰, 成会明, 科学通报, 2013, 58, 3157.)
[99] Zhang, W. J. J. Power Sources 2011, 196, 13.
[100] Zhou, X. F.; Wang, F.; Zhu, Y. M.; Liu, Z. P. J. Mater. Chem. 2011, 21, 3353.
[101] Naoi, K.; Ishimoto, S.; Miyamoto, J.; Naoi, W. Energy Environ. Sci. 2012, 5, 9363.
[102] Yan, L.; Kong, H.; Li, Z. J. Acta Chim. Sinica 2013, 71, 822. (严琳, 孔惠, 李在均, 化学学报, 2013, 71, 822.)
/
〈 |
|
〉 |