One-pot Preparation of YF3:Yb3+-Er3+/PNIPAm-co-PAA Thermosensitive Fluorescent Nanogels
Received date: 2013-10-16
Online published: 2013-12-17
Supported by
Project supported by the Science Foundation of Educational Department of Anhui Province of China (grant No. 2009AJZR0137) and Innovational Foundation of Hefei University of Technology (grant No. 2013CXSY340).
Rare-earth nanocrystals are a family of important nanomaterials due to their unique optical and electronic properties, and they are paid more attention for their applications in the areas of solar energy system, molecular imaging, optoelectronics and catalysis fields. The incorporation of rare-earth nanocrystals into smart gels, which combines the PL features of rare-earth nanocrystals with the reversible and stimuli-responsive properties of smart gels, will provide a new generation of fluorescence markers for practical application. In this paper, we report a one-pot method to prepare thermosensitive fluorescent nanogels from rare earth nanocrystals and PNIPAm-co-PAA nanogels. Firstly, using cysteamine, Er(NO3)3, Yb(NO3)3, Y(NO3)3 and NH4F as raw materials, active YF3:Yb3+-Er3+ nanocrystals with-NH2 groups were synthesized by hydrothermal method. After that, in the present of the as-prepared active YF3:Yb3+-Er3+ nanocrystals, N-isopropyl acrylamide (NIPAm) and N,N'-methylene bisacrylamide (BIS) were initiated by K2S2O8. Finally, thermosensitive fluorescent nanogels of YF3:Yb3+-Er3+/PNIPAm-co-PAA were fabricated by free radical polymerization and in-situ coupling reactions of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The microstructure and performance of the as-prepared YF3:Yb3+-Er3+ nanocrystals and the complex nanogels were investigated by differential scanning calorimeter (DSC), photoluminescence (PL), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). As the evidence from the HRTEM images, active YF3:Yb3+-Er3+ nanocrystals show well monodispersity with their size of about 6~10 nm, and the complex nanogels are polydisperse ones with their size of about 100~300 nm. The results of PL spectra at various temperatures suggest that, the active YF3: Yb3+-Er3+ nanocrystal present weak double emitting peaks around 483 and 496 nm, which are resulted from the energy level splitting of 4F7/2→4I15/2 transition of Er3+. As for the complex nanogels, the phenomenon of energy level splitting of Er3+ is different from that of the nanocrystals, with increasing ambient temperatures, double emitting peaks around 483 and 496 nm couple into an emitting peak around 489 nm gradually, and their intensity decreases correspondingly.
Key words: YF3:Yb3+-Er3+nanocrystals; PNIPAm-co-PAA; thermosensitive; nanogel; PL intensity
Song Qiusheng , Yang Sensen , Sheng Rui , Li Tan . One-pot Preparation of YF3:Yb3+-Er3+/PNIPAm-co-PAA Thermosensitive Fluorescent Nanogels[J]. Acta Chimica Sinica, 2014 , 72(1) : 89 -94 . DOI: 10.6023/A13101064
[1] Zhang, K.; Wu, W.; Guo, K.; Chen, J.; Zhang, P. Langmuir 2010, 26, 7971.
[2] Ohya, S.; Matsuda, T. J. Biomater. Sci. Polym. Ed. 2005, 16, 809.
[3] Mareen, M.; Moritz, T.; Daria, V. A.; Matthias, K.; Ramon, A. P.; Nicolas, P. P.; Andreas, F. Langmuir 2012, 28, 9168.
[4] Ionov, L. J. Mater. Chem. 2010, 20, 3382.
[5] Tang, F.; Ma, N.; Tong, L. Y.; He, F.; Li, L. D. Langmuir 2012, 28, 883.
[6] Dai, Y.; Ma, P.; Cheng, Z.; Kang, X.; Zhang, X.; Hou, Z.; Li, C.; Yang, D. M.; Zhai, X. F.; Lin, J. ACS Nano 2012, 6, 3327.
[7] Bai, S.; Wu, C. Z.; Gawlitza, K.; Klitzing, R.; Ansorge, M. B.; Wang, D. Y. Langmuir 2010, 26, 12980.
[8] Song, Q. S.; Gao, K.; Yao, W.; Yang, Y.; Ma, H. H. Acta Chim. Sinica 2012, 70, 2155. (宋秋生, 高康, 姚伟, 杨洋, 马海红, 化学学报, 2012, 70, 2155)
[9] Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829.
[10] Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Q. Biomaterials 2010, 31, 7555.
[11] Jin, J. F.; Gu, Y. J.; Man, C. W. Y.; Cheng, J. P.; Xu, Z. H.; Zhang, Y.; Wang, H. S.; Lee, V. H. Y.; Cheng, S. H.; Wong, W. T. ACS Nano 2011, 5, 7838.
[12] Song, Q. S.; Yang, Y.; Gao, K.; Ma, H. H. J. Lumin. 2013, 136, 437.
[13] Generalova, A. N.; Oleinikov, V. A.; Sukhanova, A.; Artemyev, M. V.; Zubov, V. P.; Nabiev, I. Biosens. Bioelectron. 2013, 39, 187.
[14] Oliver, A. E.; Baker, G. A.; Fugate, R. D.; Tablin, F.; Crowe, J. H. Biophys. J. 2000, 78, 2116.
[15] Vetrone, F.; Naccache, R.; Zamarrón, A.; Fuente, A.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. ACS Nano 2010, 4, 3254.
[16] Nuñez, N. O.; Quintanilla, M.; Cantelar, E.; Cusso, F.; Ocaña, M. J. Nanopart. Res. 2010, 12, 2553.
[17] Mao, W. Y.; Gong, T.; Wang, L. X.; Wang, C. C.; Yang, W. L. Acta Chim. Sinica 2009, 67, 651. (毛伟勇, 龚涛, 王李欣, 汪长春, 杨武利, 化学学报, 2009, 67, 651)
[18] Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu, S. K. ACS Nano 2009, 3, 1580.
[19] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Inorg. Chem. 2006, 45, 6663.
[20] Dong, C. H.; Raudsepp, M.; Veggel, F. C. J. Phys. Chem. C 2009, 113, 472.
[21] Wang, L. Y.; Zhang, Y.; Zhu, Y. Y. Nano Res. 2010, 3, 317.
[22] Li, C. X.; Lin, J. J. Mater. Chem. 2010, 20, 6831.
[23] Xiong, L. Q.; Shen, B.; Behera, D.; Gambhir, S. S.; Chin, F. T.; Rao, J. H. Nanoscale 2013, 5, 3253.
[24] Georgescuetal, S.; Voiculescu, A. M.; Matei, C.; Secu, C. E.; Negrea, R. F.; Secu, M. J. Lumin. 2013, 143, 150.
[25] Guo, H.; Qiao, Y. M. Opt. Mater. 2009, 31, 583.
[26] Li, T.; Guo, C. F.; Li, L. Opt. Express. 2013, 21, 18281.
[27] Lan, M.; Wang, L. L. 2012, 30, 68. (兰民, 王丽丽, 中国稀土学报, 2012, 30, 68.)
[28] Dexter, D. L.; Schulman, J. H. J. Chem. Phys. 1954, 22, 1063.
[29] Blasse, G. Phys. Lett. 1968, 28, 444.
[30] Powell, R. C.; Blasse, G. Springer. 1980, 42, 43.
[31] Xia, S. W.; Xia, S, W. Structural Chemistry, Science Press, Beijing, 2012, pp. 172~178. (夏少武, 夏树伟, 结构化学, 科学出版社, 北京, 2012, pp. 172~178.)
[32] Ofelt, G. S. Chem. Phys. 1962, 37, 511.
[33] Patra, A. Chem. Phys. Lett. 2004, 387, 35.
[34] Patra, A.; Christopher, S. F.; Rakesh, K. Appl. Phys. Lett. 2003, 83, 284.
[35] Heer, S.; Kömpe, K.; Güdel, H. U.; Haas, M. Adv. Mater. 2004, 16, 23.
[36] Yi, G. S.; Chow, G. M. Chem. Mater. 2007, 19, 341.
/
| 〈 |
|
〉 |