Facile and Efficient Catalyst-Free Preparation of Poly(propargyl quinolinium bromide) and Poly(propargyl acridinium bromide) and Characterizations of Their Structures and Properties
Received date: 2013-11-16
Online published: 2013-12-17
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 91127030 and 21334001) and the Ministry of Science and Technology of China (No. 2011CB932503).
In this paper, we report facile and efficient preparation of poly(propargyl quinolinium bromide) (PPQB) and poly(propargyl acridinium bromide) (PPAB). Both PPQB and PPAB are conjugated polymers with polyacetylene as backbones. Besides, they are polyelectrolytes since the side groups of PPQB and PPAB are quaternized quinolinium and acridinium, respectively. Therefore, PPQB and PPAB are conjugated polyelectrolytes, which are promising in many important applications. PPQB was prepared by reaction of the mixture of propargyl bromide (PB) and quinoline in DMF at 60 ℃ for 100 h. PPAB was synthesized under the same conditions via the same process except that acridine was used in the place of quinoline. The preparations are very simple and efficient, which need no any catalyst or initiator. The as-prepared PPQB and PPAB were characterized by elemental analysis and GPC-MALLS. Elemental analysis confirmed that PPQB and PPAB were the respective homopolymers of propargyl quinolinium bromide (PQB) and propargyl acridinium bromide (PAB). The molecular weights of the PPQB and PPAB were measured to be 1.8×105 and 8.1×104 g/mol, respectively, indicating efficient polymerizations of the respective monomers PQB and PAB. A tentative mechanism for the polymerizations was proposed as follows: firstly, the tertiary amine group of quinoline or acridine was quaternized by PB, leading to activation of the carbon-carbon triple bonds of the resultant quaternized salt; then, the nucleophilic attack on the triple bonds by pyridine resulted in carbon anions, which initiated the anionic polymerization of the quaternized salt. Furthermore, fluorescent and conductive properties of PPQB and PPAB were studied. Fluorescent measurements revealed that both PPQB and PPAB solutions had relatively strong fluorescent emissions, and the conductivity measurements demonstrated good conductivities of PPQB and PPAB films. Compared with poly(propargyl pyridinium bromide) that we reported previously, PPQB and PPAB are much less hygroscopic when exposed to air, so that PPQB and PPAB films are stable in the air. This broadens the applications of the two polymers.
Zhou Changming , Chen Daoyong . Facile and Efficient Catalyst-Free Preparation of Poly(propargyl quinolinium bromide) and Poly(propargyl acridinium bromide) and Characterizations of Their Structures and Properties[J]. Acta Chimica Sinica, 2014 , 72(1) : 35 -40 . DOI: 10.6023/A13111161
[1] Jiang, H.; Taranekar, P.; Reynolds, J. R.; Schanze, K. S. Angew. Chem. Int. Ed. 2009, 48, 4300.
[2] Ye, H. Y.; Li, W.; Li, W. S. Chin. J. Org. Chem. 2012, 32, 266. (叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.)
[3] Huo, Y. P.; Zeng, H. P.; Jiang, H. F. Chin. J. Org. Chem. 2004, 24, 1191. (霍延平, 曾和平, 江焕峰, 有机化学, 2004, 24, 1191.)
[4] Chen, L.; Shen, X. X.; Chen, Y. W. Chin. J. Chem. 2012, 30, 2219.
[5] Zeng, W. N.; Qi, J. P.; Wang, L. Y.; Cao, D. R. Chin. J. Org. Chem. 2009, 29, 1858. (曾文南, 亓金萍, 汪凌云, 曹德榕, 有机化学, 2009, 29, 1858.)
[6] Chen, Y. G.; Xu, B. M.; He, Z. K.; Xie, W. H. Acta Chim. Sinica 2011, 69, 1361. (陈彦国, 徐保明, 何治柯, 谢卫红, 化学学报, 2011, 69, 1361.)
[7] Xiao, Y.; Hu, Y. Q.; Huang, H. M.; Yin, D. L.; Xiao, X. M. Acta Chim. Sinica 2011, 69, 838. (肖毅, 胡玉琴, 黄红梅, 尹笃林, 肖小明, 化学学报, 2011, 69, 838.)
[8] Du, J.; Zhao, D.; Chen, Y. G.; He, Z. K. Acta Chim. Sinica 2006, 64, 963. (杜鹃, 赵丹, 陈彦国, 何治柯, 化学学报, 2006, 64, 963.)
[9] Hao, D.; Sun, L. L.; Jin, Y. Q.; Zhu, C. Q. Acta Chim. Sinica 2010, 68, 2215. (郝丹, 孙礼林, 晋英琼, 朱昌青, 化学学报, 2010, 68, 2215.)
[10] Jin, Y. Q.; Sun, L. L.; Hao, D.; Yu, R.; Qian, Z. S.; Zhu, C. Q. Chin. J. Chem. 2011, 29, 575.
[11] Ito, T.; Shirakawa, H.; Ikeda, S. J. Polym. Sci., Polym. Chem. Ed. 1974, 12, 11.
[12] Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098.
[13] Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 578.
[14] Shirakawa, H. Angew. Chem. Int. Ed. 2001, 40, 2575.
[15] MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581.
[16] Heeger, A. J. Angew. Chem. Int. Ed. 2001, 40, 2591.
[17] Choi, S. K.; Gal, Y. S.; Jin, S. H.; Kim, H. K. Chem. Rev. 2000, 100, 1645.
[18] Mayershofer, M. G.; Nuyken, O. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5723.
[19] Masuda, T.; Higashimura, T. Acc. Chem. Res. 1984, 17, 51.
[20] Lam, J. W. Y.; Tang, B. Z. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2607.
[21] Lam, J. W. Y.; Tang, B. Z. Acc. Chem. Res. 2005, 38, 745.
[22] Masuda, T. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 165.
[23] Li, C. H.; Li, Y. L. Macromol. Chem. Phys. 2008, 209, 1542.
[24] Liu, J. Z.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109, 5799.
[25] Kawasaki, M.; Masuda, T.; Higashimura, T. Polym. J. 1983, 15, 767.
[26] Gal, Y. S.; Choi, S. K. Eur. Polym. J. 1995, 31, 941.
[27] Kang, K. L.; Kim, S. H.; Cho, H. N.; Choi, K. Y.; Choi, S. K. Macromolecules 1993, 26, 4539.
[28] Kim, S. H.; Choi, S. J.; Park, J. W.; Cho, H. N.; Choi, S. K. Macromolecules 1994, 27, 2339.
[29] Choi, D. C.; Kim, S. H.; Lee, J. H.; Cho, H. N.; Choi, S. K. Macromolecules 1997, 30, 176.
[30] Kargin, V. A.; Kabanov, V. A. US 3658942, 1972 [Chem. Abstr. 1972, 74, 88376].
[31] Subramanyam, S.; Blumstein, A. Macromolecules 1991, 24, 2668.
[32] Gal, Y. S.; Lee, W. C.; Choi, S. K. Bull. Korean Chem. Soc. 1997, 18, 265.
[33] Gal, Y. S.; Lee, W. C.; Kim, S. Y.; Park, J. W.; Jin, S. H.; Koh, K. N.; Kim, S. H. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 3151.
[34] Kwak, G.; Jin, S. H.; Park, J. W.; Gal, Y. S. Macromol. Chem. Phys. 2008, 209, 1770.
[35] Gal, Y. S.; Jin, S. H.; Park, J. W.; Lim, K. T. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6153.
[36] Zhou, C. M.; Gao, Y.; Chen, D. Y. J. Phys. Chem. B 2012, 116, 11552.
[37] Huang, R.; Chen, D. Y.; Jiang, M. J. Mater. Chem. 2010, 20, 9988.
[38] Chen, D. Y.; Peng, H. S.; Jiang, M. Macromolecules 2003, 36, 2576.
/
〈 |
|
〉 |