Article

Design and Synthesis of 111In-CCPM-RGD Nanoparticles for Dual-modality Molecular Imaging

  • Zhu Hua ,
  • Li Nan ,
  • Lin Xinfeng ,
  • Hong Ye ,
  • Yang Zhi
Expand
  • a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142;
    b Isotope Department, China Institute of Atomic Energy, Beijing 102413

Received date: 2013-12-12

  Online published: 2014-01-08

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 81071198, 81172082, 81371592) and Beijing Natural Science Foundation (No. 7132040).

Abstract

The multi-modality probes are essential for multi-modality imaging. Dual labeled imaging probes allow the same target to be evaluated with two different modalities. Based on the structure of c-RGD peptide motif, some examples of multimodality agents have been reported in design of RGD for αvβ3 intergin positive tumor imaging. The aim of this study was to develop a dual-labeled nanoparticles for both single photon emission computed tomography (SPECT) and near-infrared fluorescence (NIRF) imaging of αvβ3. In this paper, c-RGD was conjugated to near-infrared fluorescence fluorophores (Cy7) entrapped polyethylene glycol-coated, core-crosslinked polymeric micelles (NIRF-CCPM) labeled with a radioisotope indium 111. The labeling efficiency was over 96%, the radio chemical purity was over 99% after purification. The in vitro stability tests were presented in 5% bull serum albumin (BSA) for 72 h at 25 ℃. Less than 10% 111In dissociation was detected by Radio-Thin-Layer Chromatography. 111In-CCPM-RGD seems to be a promising candidate for dual optical and nuclear imaging applications in tumor detection. Its structure was fully characterized. Serial SPECT imaging of human glioma U87 tumor-bearing nude mice revealed that tumor uptake of 111In-CCPM-RGD got a substantial growth from 24 h to 72 h after post-injection of 11.1 MBq nanoparticles, corroborated by in vivo NIRF imaging. Tumor uptake as measured by in vivo NIRF imaging by region of interest (ROI) with the unit of average radiant efficiency. The ROI of tumor NIRF imaging were 4.81×107 and 6.91×107 [p/sec/cm2/sr]/[μW/cm2] at 24 h, 72 h respectively. The in vivo SPECT imaging was general concordance with NIRF imaging. The combination of these nuclear and NIRF imaging technologies will significantly improve the accuracy in tumor diagnosis. The persistent, excellent, and αvβ3-specific uptake of 111In-CCPM-RGD in the tumor, observed by both SPECT and NIRF imaging, warrants further investigation and future clinical translation of such nanoparticles-based imaging agents.

Cite this article

Zhu Hua , Li Nan , Lin Xinfeng , Hong Ye , Yang Zhi . Design and Synthesis of 111In-CCPM-RGD Nanoparticles for Dual-modality Molecular Imaging[J]. Acta Chimica Sinica, 2014 , 72(4) : 427 -432 . DOI: 10.6023/A13121248

References

[1] Huang, J. G.; Zeng, W. B.; Zhou, M.; Gao, F. Acta Biophysica Sinica 2011, 4, 301. (黄佳国, 曾文彬, 周明, 高峰, 生物物理学报, 2011, 4, 301.)
[2] Hu, B.; Yao, Z. J.; Wang, W.; Liu, R. Y.; Liang, C. J. Bulletin of National Natural Science Foundation of China. 2013, 2, 83. (胡斌, 姚志军, 王威, 刘瑞越, 梁传江, 中国科学基金, 2013, 2, 83.)
[3] Alivisatos, P. Nat. Biotechnol. 2004, 22, 47.
[4] Ferrari, M. Nat. Rev. Cancer 2005, 5, 161.
[5] Sokolov, K.; Follen, M.; Aaron, J.; Pavlova, I.; Malpica, A.; Lotan, R.; Richards-Kortum, R. Cancer Res. 2003, 63, 1999.
[6] Godavarty, A.; Thompson, A. B.; Roy, R.; Gurfinkel, M.; Eppstein, M. J.; Zhang, C.; Sevick-Muraca, E. M. Journal of Biomedical Optics 2004, 9, 488.
[7] Ntziachristos, V.; Schellenberger, E. A.; Ripoll, J.; Yessayan, D.; Graves, E.; Bogdanov, A. Jr.; Josephson, L.; Weissleder, R. PNAS 2004, 101, 12294.
[8] Raab, R. M.; Stephanopoulos, G. Biotechnol. Bioeng. 2004, 88, 121.
[9] Surujpaul, P. P.; Gutierrez-Wing, C.; Ocampo-Garcia, B.; Ramirez Fde, M.; Arteaga-Murphy, C.; Pedraza-Lopez, M.; Camacho-Lopez, M. A.; Ferro-Flores, G. Biophys. Chem. 2008, 138, 83.
[10] Cai, W.; Chen, X. Nat. Protoc. 2008, 3, 89.
[11] Hood, J. D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R. A.; Xiang, R.; Cheresh, D. A. Science 2002, 296, 2404.
[12] Yang, Z.; Zheng, S.; Harrison, W. J.; Harder, J.; Wen, X.; Gelovani, J. G.; Qiao, A.; Li, C. Biomacromolecules 2007, 8, 3422.
[13] Zhu, H.; Zhao, J.; Lin, X. F.; Hong, Y.; Li, C.; Yang, Z. Molecules 2013, 18, 6425.
[14] Zhang, R.; Lu, W.; Wen, X.; Huang, M.; Zhou, M.; Liang, D.; Li, C. J. Nucl. Med. 2011, 52, 958.
[15] Zhang, R.; Xiong, C.; Huang, M.; Zhou, M.; Huang, Q.; Wen, X.; Liang, D.; Li, C. Biomaterials 2011, 32, 5872.
[16] Zhang, R.; Huang, M.; Zhou, M.; Wen, X. X.; Huang, Q.; Li, C. Molecular Imaging 2013, 12, 182.
[17] Stephen, J. M.; David, E. J. Nucl. Med. 1990, 31, 692.
[18] Yang, Z.; Zhu, H. Acta Chim. Sinica 2012, 70, 1066. (杨志, 朱华, 化学学报, 2012, 70, 1066.)
[19] Zhang, Y.; Hong, H.; Engle, J. W.; Yang, Y.; Barnhart, T. E.; Cai, W. Am. J. Nucl. Med. Mol. Imaging 2012, 1, 1.
Outlines

/