Spectral Signature of Intrachain and Interchain Polarons in Donor-Acceptor Copolymers
Received date: 2013-12-31
Online published: 2014-01-20
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21290191, 91333202).
The charge transport mechanism in donor-acceptor conjugated copolymers has attracted significant attention in last few years due to the remarkable photovoltaic effects. Different from homopolymers, the donor-acceptor interaction makes the localization of electrons in copolymers more complicated. Polaron is the elementary excitation in polymer for charge transport, which can be detected by optical spectrum. Recently, poly(N-alkyl diketopyrrolo-pyrrole dithienylthieno-[3,2-b]-thiophene) [poly(DPP-DTT)] has shown great performance in organic field effect transistor, of which the hole mobility reached 10.5 cm2/(V·s). There existed experimental evidence that the charge transport occurs in a single chain in some copolymer systems, while the optical spectra of poly(DPP-DTT) film indicated the existences of intrachain polaron and interchain polaron. We present here computational study on the optical signatures of the intrachain and interchain polarons, shedding light in clarifying the transport mechanism in poly(DPP-DTT). Based on four possible intermolecular stacking models, we used the long-range corrected density functional theory to calculate the absorption spectra. DTT-DPP-DTT was identified as the appropriate model to describe the single-chain hole and electron polarons as well as exciton in poly(DPP-DTT). We then built up four two-chain models with two DTT-DPP-DTT in different packing modes and applied the site-energy corrected method to compute the charge transfer integral between two-chains to identify the packing structure for generating interchain polarons. It was found that when DPP in one chain is in face to DPP or thieno-[3,2-b]-thiophene unit in another chain, both hole and electron interchain polaron can be generated due to the large intermolecular electron integral. The theoretical absorptions of interchain polaron are in good agreement with experiment. Therefore, the theoretical results prove the coexistence of 1D poloran and 2D polarons with different packing structures, and demonstrate that 1D and 2D charge transports are proceeding simultaneously in poly(DPP-DTT), while the interchain transport is largely affected by the packing structure.
Jiang Yuqian , Xu Haihua , Zhao Ni , Peng Qian , Shuai Zhigang . Spectral Signature of Intrachain and Interchain Polarons in Donor-Acceptor Copolymers[J]. Acta Chimica Sinica, 2014 , 72(2) : 201 -207 . DOI: 10.6023/A13121289
[1] Kim, J. H.; Lee, D. H.; Yang, D. S.; Heo, D. U.; Kim, K. H.; Shin, J.; Kim, H. J.; Baek, K. Y.; Lee, K.; Baik, H.; Cho, M. J.; Choi, D. H. Adv. Mater. 2013, 25, 4102.
[2] Chen, Z.; Lee, M. J.; Shahid Ashraf, R.; Gu, Y.; Albert-Seifried, S.; Meedom Nielsen, M.; Schroeder, B.; Anthopoulos, T. D.; Heeney, M.; McCulloch, I.; Sirringhaus, H. Adv. Mater. 2012, 24, 647.
[3] Nielsen, C. B.; Turbiez, M.; McCulloch, I. Adv. Mater. 2013, 25, 1859.
[4] Li, J.; Zhao, Y.; Tan, H. S.; Guo, Y.; Di, C. A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S. H.; Zhou, Y.; Su, H.; Ong, B. S. Sci. Rep. 2012, 2, 754.
[5] Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. J. Am. Chem. Soc. 2013, 135, 14896.
[6] Asadi, K.; Kronemeijer, A. J.; Cramer, T.; Jan Anton Koster, L.; Blom, P. W. M.; de Leeuw, D. M. Nat. Commun. 2013, 4, 1710.
[7] Park, J. H.; Jung, E. H.; Jung, J. W.; Jo, W. H. Adv. Mater. 2013, 25, 2583.
[8] Zhao, X. G.; Zhan, X. W. Chem. Soc. Rev. 2011, 40, 3728.
[9] Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Mullen, K. J. Am. Chem. Soc. 2011, 133, 2605.
[10] Li, Y.; Sonar, P.; Singh, S. P.; Soh, M. S.; van Meurs, M.; Tan, J. J. Am. Chem. Soc. 2011, 133, 2198.
[11] Li, R.; Li, H.; Zhou, X.; Hu, W. Prog. Chem. 2007, 19, 325. (李荣金, 李洪祥, 周欣然, 胡文平, 化学进展, 2007, 19, 325.)
[12] Jiang, X.; Zhang, Y.; Li, X.; Sun, P. Acta Chim. Sinica 2009, 67, 2655. (蒋晓青, 张艳, 李鑫, 孙培培, 化学学报, 2009, 67, 2655.)
[13] Donley, C. L.; Zaumseil, J.; Andreasen, J. W.; Nielsen, M. M.; Sirringhaus, H.; Friend, R. H.; Kim, J. S. J. Am. Chem. Soc. 2005, 127, 12890.
[14] Van Vooren, A.; Kim, J.-S.; Cornil, J. ChemPhysChem 2008, 9, 989.
[15] Lee, J.; Han, A. R.; Yu, H.; Shin, T. J.; Yang, C.; Oh, J. H. J. Am. Chem. Soc. 2013, 135, 9540.
[16] Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K. Nat. Commun. 2013, 4, 2238.
[17] Khatib, O.; Yuen, J. D.; Wilson, J.; Kumar, R.; Di Ventra, M.; Heeger, A. J.; Basov, D. N. Phys. Rev. B 2012, 86, 195109.
[18] Wetzelaer, G.-J. A. H.; Kuik, M.; Olivier, Y.; Lemaur, V.; Cornil, J.; Fabiano, S.; Loi, M. A.; Blom, P. W. M. Phys. Rev. B 2012, 86, 165203.
[19] Sirringhaus, H.; Brown, P.; Friend, R.; Nielsen, M.; Bechgaard, K.; Langeveld-Voss, B.; Spiering, A.; Janssen, R. A.; Meijer, E.; Herwig, P. Nature 1999, 401, 685.
[20] Xu, H.; Jiang, Y.; Li, J.; Ong, B. S.; Shuai, Z.; Xu, J. B.; Zhao, N. J. Phys. Chem. C 2013, 117, 6835.
[21] Wiebeler, C.; Tautz, R.; Feldmann, J.; von Hauff, E.; Da Como, E.; Schumacher, S. J. Phys. Chem. B 2012, 117, 4454.
[22] Tautz, R.; Da Como, E.; Limmer, T.; Feldmann, J.; Egelhaaf, H.-J.; von Hauff, E.; Lemaur, V.; Beljonne, D.; Yilmaz, S.; Dumsch, I.; Allard, S.; Scherf, U. Nat. Commun. 2012, 3, 970.
[23] Tautz, R.; Da Como, E.; Wiebeler, C.; Soavi, G.; Dumsch, I.; Fröhlich, N.; Grancini, G.; Allard, S.; Scherf, U.; Cerullo, G.; Schumacher, S.; Feldmann, J. J. Am. Chem. Soc. 2013, 135, 4282.
[24] Beljonne, D.; Cornil, J.; Sirringhaus, H.; Brown, P. J.; Shkunov, M.; Friend, R. H.; Brédas, J. L. Adv. Funct. Mater. 2001, 11, 229.
[25] Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866.
[26] Lee, J.; Lee, B.-L.; Kim, J. H.; Lee, S.; Im, S. Phys. Rev. B 2012, 85, 045206.
[27] Bijleveld, J. C.; Gevaerts, V. S.; Di Nuzzo, D.; Turbiez, M.; Mathijssen, S. G. J.; de Leeuw, D. M.; Wienk, M. M.; Janssen, R. A. J. Adv. Mater. 2010, 22, E242.
[28] Grozema, F. C.; van Duijnen, P. T.; Siebbeles, L. D. A.; Goossens, A.; de Leeuw, S. W. J. Phys. Chem. B 2004, 108, 16139.
[29] Northrup, J. E. Phys. Rev. B 2007, 76, 245202.
[30] Jiang, Y.; Peng, Q.; Gao, X.; Shuai, Z.; Niu, Y.; Lin, S. H. J. Mater. Chem. 2012, 22, 4491.
[31] Gierschner, J.; Cornil, J.; Egelhaaf, H. J. Adv. Mater. 2007, 19, 173.
[32] Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R. Acc. Chem. Res. 2010, 43, 1396.
[33] Sini, G.; Sears, J. S.; Brédas, J. L. J. Chem. Theory Comput. 2011, 7, 602.
[34] Le Bahers, T.; Adamo, C.; Ciofini, I. J. Chem. Theory Comput. 2011, 7, 2498.
[35] Jacquemin, D.; Perpete, E. A.; Ciofini, I.; Adamo, C. Theor. Chem. Acc. 2011, 128, 127.
[36] Cai, Z. L.; Crossley, M. J.; Reimers, J. R.; Kobayashi, R.; Amos, R. D. J. Phys. Chem. B 2006, 110, 15624.
[37] Liu, F.; Liu, Y.; Vico, L. D.; Lindh, R. Chem. Phys. Lett. 2009, 484, 69.
[38] Newton, M. D. Chem. Rev. 1991, 91, 767.
[39] Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chem. Rev. 2007, 107, 926.
[40] Valeev, E. F.; Coropceanu, V.; da Silva Filho, D. A.; Salman, S.; Brédas, J. L. J. Am. Chem. Soc. 2006, 128, 9882.
[41] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[42] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
[43] Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.
[44] Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.
[45] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford CT, 2009.
/
| 〈 |
|
〉 |