Pattern and Protonation Effect of Benzene Dicarboxylate Anion Species in Self-assembly System
Received date: 2014-01-10
Online published: 2014-02-06
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21202199, 21372258).
A novel macrocycle host with flexible structure and big cavity, cyclo[2](2,6-bis(1H-imidazol-1-yl)- pyridine)[2](1,4-dimethylenebenzene) (i.e. 14+), was effectively synthesized through cyclization reaction between 1,4-bisbromo-methylbenzene and 2,6-di(1H-imidazol-1-yl)pyridine. The binding and self-assembly properties of macrocycle host 14+ with a series of benzene dicarboxylate anion guests (i.e. mono-terephthalate anion 2, di-terephthalate anion 3, mono-isophthalate anion 4, di-isophthalate anion 5, mono-phthalate anion 6 or di-phthalate anion 7) were studied in detail via 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), nuclear Overhauser effect spectroscopy (NOESY) in solution, electrospray ionization mass spectrometry (ESI-MS) in gas phase, and X-ray single crystallography in solid state. The result implied that macrocycle host 14+ and mono-terephthalate anion (2) or di-isophthalate anion (5) form pseudorotaxane structure, even more complex supramolecular self-assembly structure (e.g. pseudo-oligarotaxne ). Meanwhile the other guest anions adopt the "outside" binding modes in the complexation with 14+. It is also found that the thermodynamic equilibrium(s) and association constants of the complexes between macrocycle host 14+ and a series of benzene dicarboxylate anion guest species are different via 1H NMR Job-plots and 1H NMR spectroscopic titrations in solution: (1) the stoichiometry values suggested that host 14+ can bind equivalent or more mono-anion guests than di-anion species from the same benzene dicarboxylic acid; (2) comparing the association constants of 1:1 (host:guest) complex between 14+ and mono-anion species resulted in Ka[14+·2]>Ka[14+·4]>Ka[14+·6]; the similar comparison was carried out for di-anion species interactions and obtained Ka[14+·3]>Ka[14+·5]>Ka[14+·7]; the result suggest that the pattern of the anion highly influences the thermostability of the 1:1 complex. It is speculated that the pattern and protonation factors of the benzene dicarboxylate anion guests determine their interactions with macrocycle 14+, including binding modes, stoichiometries, association constants, and so on. The finding will help to direct the following novel supramolecular self-assembly construction involving macrocycle host and multi-carboxylate anion species.
Zhou Li , Xu Lijin , Gong Hanyuan . Pattern and Protonation Effect of Benzene Dicarboxylate Anion Species in Self-assembly System[J]. Acta Chimica Sinica, 2014 , 72(4) : 447 -455 . DOI: 10.6023/A14010029
[1] Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
[2] Wang, F.; Han, C.-Y.; He, C.-L.; Zhou, Q.-Z.; Zhang, J.-Q.; Wang, C.; Li, N.; Huang, F.-H. J. Am. Chem. Soc. 2008, 130, 11254.
[3] Wang, F.; Zhang, J.-Q.; Ding, X.; Dong, S.-Y.; Liu, M.; Zheng, B.; Li, S.-J.; Wu, L.; Yu, Y.-H.; Gibson, H. W.; Huang, F.-H. Angew. Chem., Int. Ed. 2010, 49, 1090.
[4] Zhang, Z.-B.; Luo, Y.; Chen, J.-Z.; Dong, S.-Y.; Yu, Y.-H.; Ma, Z.; Huang, F.-H. Angew. Chem., Int. Ed. 2011, 50, 1397.
[5] Lewandowski, B.; De Bo, G.; Ward, J. W.; Papmeyer, M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.; Heckmann, D.; Goldup, S. M.; D'Souza, D. M.; Fernandes, A. E.; Leigh, D. A. Science 2013, 339, 189.
[6] Yu, L.-T.; Wang, Z.; Wu, J.; Tu, S.-J.; Ding, K.-L. Angew. Chem., Int. Ed. 2010, 49, 3627.
[7] Yaghi, O.-M.; Li, H.-L.; Davis, C.; Richardson, D.; Groy, T.-L. Acc. Chem. Res. 1998, 31, 474.
[8] Shi, F.; Wang, Z. Q.; Zhao, N.; Zhang, X. Langmuir 2005, 21, 1599.
[9] Reches, M.; Gazit, E. Science 2003, 300, 625.
[10] Guan, Y.; Yu, S.-H.; Antonietti, M.; Bottcher, C.; Faul, C. F. J. Chem. Eur. J. 2005, 11, 1305.
[11] Yan, X.-Z.; Xu, D.-H.; Chi, X.-D.; Chen, J.-Z.; Dong, S.-Y.; Ding, X.; Yu, Y.-H.; Huang, F.-H. Adv. Mater. 2012, 24, 362.
[12] Zhang, M.-M.; Xu, D.-H.; Yan, X.-Z.; Chen, J.-Z.; Dong, S.-Y.; Zheng, B.; Huang, F.-H. Angew. Chem., Int. Ed. 2012, 51, 7011.
[13] Du, P.; Chen, G.-S.; Jiang, M. Sci. China, Ser. B-Chem. 2012, 42, 723. (杜萍, 陈国颂, 江明, 中国科学B辑: 化学, 2012, 42, 723.)
[14] Zhou, Y.-H.; Mao, Z.-W. Sci. China, Ser. B-Chem. 2009, 39, 289. (周映华, 毛宗万, 中国科学B辑: 化学, 2009, 39, 289.)
[15] Xue, M.; Hu, S.-Z.; Chen, C.-F. Acta Chim. Sinica 2012, 70, 1679. (薛敏, 胡树振, 陈传峰, 化学学报, 2012, 70, 1679.)
[16] Sessler, J. L.; Gale, P. A.; Cho, W. S. Anion Receptor Chemistry; Monographs in Supramolecular Chemistry, Ed.: Stoddart, J., Series, F., Royal Society of Chemistry, Cambridge, U.K, 2006.
[17] Juwarker, H.; Jeong, K. S. Chem. Soc. Rev. 2010, 39, 3664.
[18] Yu, G.-C.; Xue, M.; Zhang, Z.-B.; Li, J.-Y.; Han, C.-Y.; Huang, F.-H. J. Am. Chem. Soc. 2012, 134, 13248.
[19] Yang, Y.; Wu, L.-X. Scientia Sinica Chimica 2011, 41, 261. (杨扬, 吴立新, 中国科学·化学, 2011, 41, 261.)
[20] Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666.
[21] Lin, Z.-J.; Lin, X.; Cao, R. Acta Chim. Sinica 2012, 70, 2012. (林祖金, 林熙, 曹荣, 化学学报, 2012, 70, 2012.)
[22] Li, Q.-W.; Sue, C.-H.; Basu, S.; Shveyd, A. K.; Zhang, W.-Y.; Barin, G.; Fang, L.; Sarjeant, A. A.; Stoddart, J. F.; Yaghi, O. M. Angew. Chem., Int. Ed. 2010, 49, 6751.
[23] Coskun, A.; Hmadeh, M.; Barin, G.; Gandara, F.; Li, Q.-W.; Choi, E.; Strutt, N. L.; Cordes, D. B.; Slawin, A. M. Z.; Stoddart, J. F.; Sauvage, J. P.; Yaghi, O. M. Angew. Chem., Int. Ed. 2012, 51, 2160.
[24] Li, Q.-W.; Zhang, W.-Y.; Miljanic, O. S.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Chem. Commun. 2010, 46, 380.
[25] Li, Q.-W.; Zhang, W.-Y.; Miljanic, O. S.; Sue, C.-H.; Zhao, Y.-L.; Liu, L.-H.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Science 2009, 325, 855.
[26] Cao, D.; Juricek, M.; Brown, Z. J.; Sue, A. C.-H.; Liu, Z.-C.; Lei, J. Y.; Blackburn, A. K.; Grunder, S.; Sarjeant, A. A.; Coskun, A.; Wang, C.; Farha, O. K.; Hupp, J. T.; Stoddart, J. F. Chem. Eur. J. 2013, 19, 8457.
[27] Vukotic, V. N.; Harris, K. J.; Zhu, K. L.; Schurko, R. W.; Loeb, S. J. Nat. Chem. 2012, 4, 456.
[28] Vukotic, V. N.; Loeb, S. J. Chem. Soc. Rev. 2012, 41, 5896.
[29] Gong, H.-Y.; Rambo, B. M.; Karnas, E.; Lynch, V. M.; Sessler, J. L. Nat. Chem. 2010, 2, 406.
[30] Gong, H.-Y.; Rambo, B. M.; Nelson, C. A.; Cho, W.; Lynch, V. M.; Zhu, X.-Y.; Oh, M.; Sessler, J. L. Dalton. Trans. 2012, 41, 1134.
[31] Gong, H.-Y.; Rambo, B. M.; Cho, W.; Lynch, V. M.; Oh, M.; Sessler, J. L. Chem. Commun. 2011, 47, 5973.
[32] Hua, Y.; Ramabhadran, R. O.; Uduehi, E. O.; Karty, J. A.; Raghavachari, K.; Flood, A. H. Chem. Eur. J. 2011, 17, 312.
[33] Ilioudis, C. A.; Tocher, D. A.; Steed, J. W. J. Am. Chem. Soc. 2004, 126, 12395.
[34] Connors, K. A. Binding Constants: The Measurement of Molecular Complex Stability, John Wiley and Sons, New York, 1987.
[35] Gans, P.; Sabatini, A.; Vacca, A. Talanta 1996, 43, 1739.
[36] Gong, H.-Y.; Rambo, B. M.; Karnas, E.; Lynch, V. M.; Keller, K. M.; Sessler, J. L. J. Am. Chem. Soc. 2011, 133, 1526.
[37] Ning, Y.-C. Structural Identification of Organic Compounds with Spectroscopic Technique, Ed.: Ning, Y.-C., Wiley-VCH, New York, 2005, p. 437.
[38] Neuhaus, D. The Nuclear Overhauser Effect in Structural and Conformational Analysis, Vol. 5, Ed.: Williamson, M. P., VCH, New York, 1989, p. 253.
[39] Friebolin, H. Basic One-and Two-Dimensional NMR Spectroscopy, Wiley-VCH, Weinheim, 2005, p. 1030.
[40] Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry, VCH, Weinheim, 1985.
/
| 〈 |
|
〉 |