Article

Double Strand-Specific Nuclease-Assisted Sensitive Detection of MicroRNA

  • Li Xiaoli ,
  • Wang Yucong ,
  • Zhang Xuejing ,
  • Zhao Yunjie ,
  • Liu Chenghui ,
  • Li Zhengping
Expand
  • a College of Chemistry and Environmental Science, Hebei University, Baoding 071002;
    b School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062

Received date: 2014-01-04

  Online published: 2014-02-25

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21105020, 20905018) and financial support of Hebei University (No. 2009177).

Abstract

In this study, a new isothermal signal amplification method is developed for sensitive detection of microRNAs (miRNAs) by integrating the distinct advantages of graphene oxide (GO) for efficient fluorescence quenching of fluorophore-labeled single strand DNA (ssDNA) and double strand (ds)-specific nuclease (DSN) for highly selective digestion of DNA strand in DNA/RNA hybrids. DSN is a nuclease purified from hepatopancreas of Red King crab, which shows a strong preference for cleaving dsDNA and DNA in DNA/RNA hybrid duplexes. On contrast, DSN is practically inactive towards ssDNA or single- or double-stranded RNA. Herein, let-7a is selected as the proof-of-concept target miRNA and a fluorescein-labeled ssDNA probe is designed to be complementary to let-7a. The ssDNA probe, which will not be hydrolyzed by DSN in the absence of let-7a, will be adsorbed on GO via π-π stacking, resulting in efficient fluorescence quenching. When let-7a is introduced, it will hybridize with the ssDNA probe to form a double helix structure (dsDNA). DSN can selectively cleave the DNA oligonucleotides of the DNA/RNA hybrid to produce very small DNA fragments. Let-7a is thus released and will hybridize with another ssDNA probe again, which will be further cleaved by DSN. In this manner, each let-7a molecule can specifically trigger various cycles of hybridization and DSN cleavage of fluorescent ssDNA to yield numerous small fragments of DNA oligonucleotides. It should be noted that the π-π stacking interaction between GO and the very small DNA fragments bearing the fluorophores will be remarkably weakened, making the fluorescence maintained. Therefore, the DSN-mediated cycling of fluorescent ssDNA cleavage greatly amplifies the fluorescence signal for miRNA detection. Under the optimized experimental conditions, the fluorescence signal is proportional linearly to the concentration of let-7a in the range from 100 pmol/L to 5 nmol/L, and the detection limit is calculated to be 60 pmol/L (3σ). Furthermore, this proposed approach can also be applied to the simultaneous detection of multiplex miRNA targets.

Cite this article

Li Xiaoli , Wang Yucong , Zhang Xuejing , Zhao Yunjie , Liu Chenghui , Li Zhengping . Double Strand-Specific Nuclease-Assisted Sensitive Detection of MicroRNA[J]. Acta Chimica Sinica, 2014 , 72(3) : 395 -400 . DOI: 10.6023/A14010012

References

[1] Carrington, J. C.; Ambros, V. Science 2003, 301, 336.

[2] Lewis, B. P.; Burge, C. B.; Bartel, D. P. Cell 2005, 120, 15.

[3] Dong, H. F.; Lei, J. P.; Ding, L.; Wen, Y. Q.; Ju, H. X.; Zhang, X. J. Chem. Rev. 2013, 113, 6207.

[4] Calin, G. A.; Dumitru, C. D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C. M. Proc. Natl. Acad. Sci. 2002, 99, 15524.

[5] Lagos-Quintana, M.; Rauhut, R.; Lendeckel, W.; Tuschl, T. Science 2001, 294, 853.

[6] Liu, C. G.; Calin, G. A.; Meloon, B.; Gamliel, N.; Sevignani, C.; Ferracin, M.; Dumitru, C. D.; Shimizu, M.; Zupo, S.; Dono, M.; Alder, H.; Bullrich, F.; Negrini, M.; Croce, C. M. Proc. Natl. Acad. Sci. 2004, 101, 9740.

[7] Thomson, J. M.; Parker, J.; Perou, C. M.; Hammond, S. M. Nat. Methods 2004, 1, 47.

[8] Raymond, C. K.; Roberts, B. S.; Garrett-Engele, P.; Lim, L. P.; Johnson, J. M. RNA 2005, 11, 1737.

[9] Jonstrup, S. P.; Koch, J.; Kjems, J. RNA 2006, 12, 1747.

[10] Cheng, Y. Q.; Zhang, X.; Li, Z. P.; Jiao, X. X.; Wang, Y. C.; Zhang, Y. L. Angew. Chem., Int. Ed. 2009, 48, 3268.

[11] Yan, J. L.; Li, Z. P.; Liu, C. H.; Cheng, Y. Q. Chem. Commun. 2010, 46, 2432.

[12] Jia, H. X.; Li, Z. P.; Liu, C. H.; Cheng, Y. Q. Angew. Chem., Int. Ed. 2010, 49, 5498.

[13] Li, C. P.; Li, Z. P.; Jia, H. X.; Yan, J. L. Chem. Commun. 2011, 47, 2595.

[14] Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. Angew. Chem., Int. Ed. 2009, 48, 4785.

[15] Liu, B. W.; Sun, Z. Y.; Zhang, X.; Liu, J. W. Anal. Chem. 2013, 85, 7987.

[16] Yang, L.; Liu, C. H.; Ren, W.; Li, Z. P. ACS Appl. Mater. Interfaces 2012, 4, 6450.

[17] He, Y.; Huang, G. M.; Cui, H. ACS Appl. Mater. Interfaces 2013, 5, 11336.

[18] Li, F.; Huang, Y.; Yang, Q.; Zhong, Z. T.; Li, D.; Wang, L. H.; Song, S. P.; Fan, C. H. Nanoscale 2010, 2, 1021.

[19] He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fan, C. Adv. Funct. Mater. 2010, 20, 453.

[20] Yang, F.; Wang, L.; Guo, Z. Acta Chim. Sinica 2012, 70, 1283. (杨帆, 王伶俐, 郭志慧, 化学学报, 2012, 70, 1283.)

[21] Lu, Z. X.; Zhang, L. M.; Deng, Y.; Li, S.; He, N. Y. Nanoscale 2012, 4, 5840.

[22] Anisimova, V. E.; Rebrikov, D. V.; Shagin, D. A. BMC Biochemistry 2008, 9, 14.

[23] Shagin, D. A.; Rebrikov, D. V.; Kozhemyako, V. B.; Altshuler, I. M.; Shcheglov, A. S.; Zhulidov, P. A.; Bogdanova, E. A.; Staroverov, D. B.; Rasskazov, V. A.; Lukyanov, S. Genome Res. 2002, 12, 1935.

[24] Yin, B. C.; Liu, Y. Q.; Ye, B. C. J. Am. Chem. Soc. 2012, 134, 5064.

[25] Lin, X. Y.; Zhang, C.; Huang, Y. S.; Zhu, Z.; Chen, X.; Yang, C. Y. Chem. Commun. 2013, 49, 7243.

[26] Iorio, M. V.; Ferracin, M.; Liu, C. G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; Ménard, S.; Palazzo, J. P.; Rosenberg, A.; Musiani, P.; Volinia, S.; Nenci, I.; Calin, G. A.; Querzoli, P.; Negrini, M.; Croce, C. M. Cancer Res. 2005, 65, 7065.

[27] Wegman, D. W.; Cherney, L. T.; Yousef, G. M.; Krylov, S. N. Anal. Chem. 2013, 85, 6518.

[28] Zhang, P. B.; Zhang, J. Y.; Wang, C. L.; Liu, C. H.; Wang, H.; Li, Z. P. Anal. Chem. 2014, 86, 1076.

[29] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.

Outlines

/