Article

Research Progress of Organic Electrolyte Based Lithium-Air Batteries

  • Jiang Jie ,
  • Liu Xiaofei ,
  • Zhao Shiyong ,
  • He Ping ,
  • Zhou Haoshen
Expand
  • a College of Engineering and Applied Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093;
    b Zhangjiagang Guotai-Huarong New Chemical Materials Co., Ltd, Zhangjiagang 215634

Received date: 2013-10-21

  Online published: 2014-03-20

Supported by

Project supported by the Natural Science Foundation of Jiangsu Province (No. BK2012309) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120091120022).

Abstract

With the gradual depletion of fossil fuels and the increasingly serious urban environmental pollution, the development of pure electric vehicles (PEVs) and hybrid electric vehicles (HEVs) has gained more and more attention. The electric vehicles of state-of-the-art Li-ion batteries have been able to drive for more than 140 km per charge, however, it is still far behind the 700 km range of a gasoline-powered vehicle. Due to its environmental friendship, low cost and the high theoretical energy density, which is 5~8 times as much as that of Li-ion batteries and comparable to gasoline vehicles, the lithium-air batteries have become the research hotspot of academia. The Li-air battery based on organic electrolyte has a relatively simple structure, and usually consists of a lithium metal anode, liquid organic electrolyte and a porous carbon or carbon-supported with catalyst air electrode, which is similar to Li-ion batteries, except that the air electrode is exposed to air. 2O2 and carbon. In summary, the research and development of the Li-air batteries are still at its initial stages and great efforts should be spent. Based on this, the authors focused on the review of scientific problems of Li-air batteries in basic research, and pointed out the challenges and development direction of this system.

Cite this article

Jiang Jie , Liu Xiaofei , Zhao Shiyong , He Ping , Zhou Haoshen . Research Progress of Organic Electrolyte Based Lithium-Air Batteries[J]. Acta Chimica Sinica, 2014 , 72(4) : 417 -426 . DOI: 10.6023/A13101081

References

[1] Xu, K.; von Cresce, A. J. Mater. Chem. 2011, 21, 9849.
[2] Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nat. Mater. 2012, 11, 19.
[3] Gu, D.-M.; Zhang, C.-M.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L.-S. Acta Chim. Sinica 2012, 70, 2115. (顾大明, 张传明, 顾硕, 张音, 王余, 强亮生, 化学学报, 2012, 70, 2115.)
[4] Gu, D.-M.; Wang, Y.; Gu, S.; Zhang, C.-M.; Yang, D.-D. Acta Chim. Sinica 2013, 71, 1354. (顾大明, 王余, 顾硕, 张传明, 杨丹丹, 化学学报, 2013, 71, 1354.)
[5] Wang, F.; Liang, C.-S.; Xu, D.-L.; Cao, H.-Q.; Sun, H.-Y.; Luo, Z.-K. J. Inorg. Mater. 2012, 27, 1233. (王芳, 梁春生, 徐大亮, 曹慧群, 孙宏元, 罗仲宽, 无机材料学报, 2012, 27, 1233.)
[6] Abraham, K.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1.
[7] Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390.
[8] Wang, Y.-G.; Zhou, H.-S. J. Power Sources 2010, 195, 358.
[9] He, P.; Wang, Y.-G.; Zhou, H.-S. Electrochem. Commun. 2010, 12, 1686.
[10] He, P.; Wang, Y.-G.; Zhou, H.-S. J. Power Sources 2011, 196, 5611.
[11] Zhou, H.-S.; Wang, Y.-G.; Li, H.-Q.; He, P. ChemSusChem 2010, 3, 1009.
[12] Wang, Y.-G.; Zhou, H.-S. Chem. Commun. 2010, 46, 6305.
[13] He, P.; Wang, Y.-G.; Zhou, H.-S. Chem. Commun. 2011, 47, 10701.
[14] Wang, Y.-R.; Ohnishi, R.; Yoo, E.; He, P.; Kubota, J.; Domen, K.; Zhou, H.-S. J. Mater. Chem. 2012, 22, 15549.
[15] Kitaura, H.; Zhou, H.-S. Adv. Energy Mater. 2012, 2, 889.
[16] Kitaura, H.; Zhou, H.-S. Energy Environ. Sci. 2012, 5, 9077.
[17] Peng, Z.-Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.-H.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J.; Bruce, P. G. Angew. Chem., Int. Ed. 2011, 50, 6351.
[18] Laoire, C. O.; Mukerjee, S.; Abraham, K.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178.
[19] McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. C 2012, 116, 23897.
[20] Jung, H.-G.; Kim, H.-S.; Park, J.-B.; Oh, I.-H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y.-K. Nano Lett. 2012, 12, 4333.
[21] Wen, R.; Hong, M.; Byon, H. R. J. Am. Chem. Soc. 2013, 135, 10870.
[22] Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Electrochemistry 2010, 78, 403.
[23] Freunberger, S. A.; Chen, Y.-H.; Peng, Z.-Q.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040.
[24] Freunberger, S. A.; Chen, Y.-H.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. Angew. Chem., Int. Ed. 2011, 50, 8609.
[25] Chen, Y.-H.; Freunberger, S. A.; Peng, Z.-Q.; Bardé, F.; Bruce, P. G. J. Am. Chem. Soc. 2012, 134, 7952.
[26] Jung, H.-G.; Hassoun, J.; Park, J.-B.; Sun, Y.-K.; Scrosati, B. Nat. Chem. 2012, 4, 579.
[27] Peng, Z. Q.; Freunberger, S. A.; Chen, Y.-H.; Bruce, P. G. Science 2012, 337, 563.
[28] Chen, Y.-H.; Freunberger, S. A.; Peng, Z.-Q.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489.
[29] Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. J. Am. Chem. Soc. 2013, 135, 2076.
[30] Li, F.-J.; Zhang, T.; Yamada, Y.; Yamada, A.; Zhou, H.-S. Adv. Energy Mater. 2013, 3, 532.
[31] Débart, A.; Paterson, A. J.; Bao, J.-L.; Bruce, P. G. Angew. Chem., Int. Ed. 2008, 120, 4597.
[32] Yang, X.-H.; He, P.; Xia, Y.-Y. Electrochem. Commun. 2009, 11, 1127.
[33] Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.-Q.; Bruce, P. G. J. Am. Chem. Soc. 2013, 135, 494.
[34] Gallant, B. M.; Mitchell, R. R.; Kwabi, D. G.; Zhou, J.-G.; Zuin, L.; Thompson, C. V.; Shao-Horn, Y. J. Phys. Chem. C 2012, 116, 20800.
[35] Li, F.-J.; Zhang, T.; Zhou, H.-S. Energy Environ. Sci. 2013, 6, 1125.
[36] Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao-Horn, Y. Energy Environ. Sci. 2011, 4, 2952.
[37] Cui, Y.-M.; Wen, Z.-Y.; Liang, X.; Lu, Y.; Jin, J.; Wu, M.-F.; Wu, X.-W. Energy Environ. Sci. 2012, 5, 7893.
[38] Yoo, E.; Zhou, H.-S. ACS Nano 2011, 5, 3020.
[39] Xiao, J.; Mei, D.-H.; Li, X.-L.; Xu, W.; Wang, D.-Y.; Graff, G. L.; Bennett, W. D.; Nie, Z.-M.; Saraf, L. V.; Aksay, I. A. Nano Lett. 2011, 11, 5071.
[40] Lu, Y.-C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. Electrochem. Solid-State Lett. 2010, 13, A69.
[41] Lu, Y.-C.; Xu, Z.-C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. J. Am. Chem. Soc. 2010, 132, 12170.
[42] Lu, Y.-C.; Gasteiger, H. A.; Shao-Horn, Y. J. Am. Chem. Soc. 2011, 133, 19048.
[43] Jung, H.-G.; Jeong, Y. S.; Park, J.-B.; Sun, Y.-K.; Scrosati, B.; Lee, Y. J. ACS Nano 2013, 7, 3532.
[44] Débart, A.; Bao, J.-L.; Armstrong, G.; Bruce, P. G. J. Power Sources 2007, 174, 1177.
[45] Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. Angew. Chem., Int. Ed. 2013, 125, 410.
[46] Xu, J.-J.; Xu, D.; Wang, Z.-L.; Wang, H.-G.; Zhang, L.-L.; Zhang, X.-B. Angew. Chem., Int. Ed. 2013, 125, 3979.
[47] Shui, J.-L.; Karan, N. K.; Balasubramanian, M.; Li, S.-Y.; Liu, D.-J. J. Am. Chem. Soc. 2012, 134, 16654.
[48] Li, F.-J.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H.-S. Chem. Commun. 2013, 49, 1175.
[49] McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. J. Am. Chem. Soc. 2011, 133, 18038.
[50] Girishkumar, G.; McCloskey, B.; Luntz, A.; Swanson, S.; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193.
[51] Zhang, T.; Zhou, H.-S. Nat. Commun. 2013, 4, 1817.
[52] Lim, H.-K.; Lim, H.-D.; Park, K.-Y.; Seo, D.-H.; Gwon, H.; Hong, J.; Goddard, W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733.
[53] Zhang, J.-G.; Wang, D.-Y.; Xu, W.; Xiao, J.; Williford, R. E. J. Power Sources 2010, 195, 4332.
[54] Crowther, O.; Keeny, D.; Moureau, D. M.; Meyer, B.; Salomon, M.; Hendrickson, M. J. Power Sources 2012, 202, 347.
[55] Fu, Z.-H.; Wei, Z.; Lin, X.-J.; Huang, T.; Yu, A.-S. Electrochim. Acta 2012, 78, 195.
[56] Zhang, T.; Zhou, H.-S. Angew. Chem., Int. Ed. 2012, 124, 11224.
[57] Hassoun, J.; Jung, H.-G.; Lee, D.-J.; Park, J.-B.; Amine, K.; Sun, Y.-K.; Scrosati, B. Nano Lett. 2012, 12, 5775.
[58] Assary, R. S.; Lu, J.; Du, P.; Luo, X.-Y.; Zhang, X.-Y.; Ren, Y.; Curtiss, L. A.; Amine, K. ChemSusChem 2013, 6, 51.
[59] Cheng, F.-Y.; Chen, J. Acta Chim. Sinica 2013, 71, 473. (程方益, 陈军, 化学学报, 2013, 71, 473.)
[60] Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z.-Q.; Chen, Y.-H.; Liu, Z.; Bruce, P. G. Nat. Mater. 2013, 12, 1050.
Outlines

/