Article

Synthesis and Properties of Thermo-sensitive Amphiphilic Pluronic-b-poly((ε-caprolactone)-co-(6-(benzyl-oxycarbonylmethyl)-ε-caprolactone))

  • Du Zhengzhen ,
  • Zhang Jing ,
  • Zhang Yan ,
  • Lang Meidong
Expand
  • a Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237;
    b Shanghai Nanotechnology Promotion Center, Shanghai 200237

Received date: 2014-03-21

  Online published: 2014-04-17

Supported by

Project supported by the National Natural Science Foundation of China (No. 21274039), the Shanghai Municipal Natural Science Foundation (No. 12ZR1427300) and the Leading Academic Discipline Project of Shanghai Education Committee, China (No. J50102).

Abstract

In this paper, a series of amphiphilic block copolymers Pluronic-b-poly(ε-caprolactone-co-benzyl-oxycarbonyl-methyl-ε-caprolactone) (Pluronic-b-P(CL-co-BCL)) were synthesized successfully via ring-opening polymerization (ROP) of ε-caprolactone (CL) and 6-(benzyl-oxycarbonylmethyl)-ε-caprolactone (BCL) using stannous octoate as the catalyst (weight ratio: 0.5‰) and PEO99-b-PPO69-b-PEO99 (Pluronic F127) as macroinitiator. 1H NMR, GPC and FT-IR were employed to determine the structure, composition, molecular weight and molecular weight distribution. The result of 1H NMR showed the content of BCL in the copolymers was less than the theoretical value, which may be attributed to the low reactivity of BCL due to the steric hindrance of Bn substituent on the δ position of CL. The number-average molecular weight by GPC was different from the value calculated by 1H NMR, it may be attributed to the hydrodynamic volume of the copolymers being different from that of the poly(styrene) as the GPC calibration in THF. The thermal properties of the copolymers were evaluated by TGA, DSC and XRD. The results indicated that the stability and the crystallinity of the copolymers could be adjusted by the content of the BCL. Due to the BCL units in the copolymers reduced the regularity of the PCL chain and intensively disrupted its crystallinity and the steric hindrance effect of BCL trammeled the movement of the PCL chain, the melting point (Tm) of CL segment in copolymer shifted down and the glass transition temperature (Tg) of copolymer increased with the increase of the content of BCL respectively. Emulsion/solvent evaporation technique was employed to prepare the polymeric micelle solution. The formation, size and morphologies of the micelles in aqueous solution were studied by fluorescence spectroscopy, TEM and DLS, the results demonstrated that the micelles were spherical spheres with narrow distribution, the copolymer had low critical micelles concentration (CMC) and depended on the content of BCL in the copolymer. Moreover, DLS results showed that the Pluronic-b-P(CL-co-BCL) had a reversible thermosensitivity due to the introduction of BCL.

Cite this article

Du Zhengzhen , Zhang Jing , Zhang Yan , Lang Meidong . Synthesis and Properties of Thermo-sensitive Amphiphilic Pluronic-b-poly((ε-caprolactone)-co-(6-(benzyl-oxycarbonylmethyl)-ε-caprolactone))[J]. Acta Chimica Sinica, 2014 , 72(5) : 609 -614 . DOI: 10.6023/A14030211

References

[1] Basak, R.; Bandyopadhyay, R. Langmuir 2013, 29, 4350.



[2] Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Mendes, E.; Dubruel, P. Eur. Polym. J. 2014, 53, 126.



[3] Nita, L. E.; Chiriac, A.; Bercea, M.; Wolf, B. A. Colloids Surf., B 2013, 103, 544.



[4] Shao, F.-K.; Wu, W.; Zha, L.-S.; Zhang, Y. Acta Chim. Sinica 2008, 66, 138. (邵芳可, 吴唯, 查刘生, 张琰, 化学学报, 2008, 66, 138.)



[5] Xiong, X. Y.; Tam, K. C.; Gan, L. H. Macromolecules 2003, 36, 9979.



[6] Sokolsky-Papkov, M.; Agashi, K.; Olaye, A.; Shakesheff, K.; Domb, A. J. Adv. Drug Delivery Rev. 2007, 59, 187.



[7] Woodruff, M. A.; Hutmacher, D. W. Prog. Polym. Sci. 2010, 35, 1217.



[8] Gao, X.; Wang, B.; Wei, X.; Rao, W.; Ai, F.; Zhao, F.; Men, K.; Yang, B.; Liu, X.; Huang, M.; Gou, M.; Qian, Z.; Huang, N.; Wei, Y. Int. J. Nanomed. 2013, 8, 971.



[9] Li, Y.-Y.; Li, L.; Dong, H.-Q.; Cai, X.-J.; Ren, T.-B. Mater. Sci. Eng., C 2013, 33, 2698.



[10] Ha, J. C.; Kim, S. Y.; Lee, Y. M. J. Controlled Release 1999, 62, 381.



[11] Kim, S. Y.; Ha, J. C.; Lee, Y. M. J. Controlled Release 2000, 65, 345.



[12] Cohn, D.; Hotovely Salomon, A. Biomaterials 2005, 26, 2297.



[13] Detrembleur, C.; Mazza, M.; Halleux, O.; Lecomte, P.; Mecerreyes, D.; Hedrick, J. L.; Jérôme, R. Macromolecules 2000, 33, 14.



[14] Riva, R.; Schmeits, S.; Jérôme, C.; Jérôme, R.; Lecomte, P. Macromolecules 2007, 40, 796.



[15] Mahmud, A.; Xiong, X.-B.; Lavasanifar, A. Macromolecules 2006, 39, 9419.



[16] Falamarzian, A.; Lavasanifar, A. Colloids Surf., B 2010, 81, 313.



[17] Falamarzian, A.; Lavasanifar, A. Macromol. Biosci. 2010, 10, 648.



[18] Zhang, Y.; Li, J.; Du, Z.; Lang, M. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 188.



[19] Yan, J.; Zhang, Y.; Xiao, Y.; Zhang, Y.; Lang, M. React. Funct. Polym. 2010, 70, 400.



[20] Yan, J.; Ye, Z.; Luo, H.; Chen, M.; Zhou, Y.; Tan, W.; Xiao, Y.; Zhang, Y.; Lang, M. Polym. Chem. 2011, 2, 1331.



[21] Sun, Y.; Dai, W.-F.; Zhang, Q.-C.; Zhang, Y.; Lang, M.-D. Acta Chim. Sinica 2009, 67, 1259. (孙琰, 戴炜枫, 张清醇, 张琰, 郎美东, 化学学报, 2009, 67, 1259.)



[22] Habnouni, S. E.; Darcos, V.; Coudane, J. Macromol. Rapid Commun. 2009, 30, 165.



[23] Shuai, X.; Porbeni, F. E.; Wei, M.; Bullions, T.; Tonelli, A. E. Macromolecules 2002, 35, 2401.



[24] Liu, J.; Zhang, Y.; Yan, J.; Lang, M. J. Mater. Chem. 2011, 21, 6677.



[25] Yan, J.; Ye, Z.; Chen, M.; Liu, Z.; Xiao, Y.; Zhang, Y.; Zhou, Y.; Tan, W.; Lang, M. Biomacromolecules 2011, 12, 2562.



[26] Lei, Z.-L.; Liu, Y.-L. Acta Chim. Sinica 2006, 64, 2403. (雷忠利, 刘亚兰, 化学学报, 2006, 64, 2403.)



[27] Ru, M.; Dai, W.-F.; Du, Z.-Z.; Lang, M.-D. Acta Chim. Sinica 2008, 66, 1884. (茹敏良, 戴炜枫, 杜征臻, 郎美东, 化学学报, 2008, 66, 1884.)



[28] Riess, G. Prog. Polym. Sci. 2003, 28, 1107.



[29] Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Commun. 2009, 30, 267.



[30] Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A. Macromolecules 1994, 27, 2414.



[31] Zhang, M.; Djabourov, M.; Bourgaux, C.; Bouchemal, K. Int. J. Pharm. 2013, 454, 599.



[32] Safaei Nikouei, N.; Lavasanifar, A. Acta Biomater. 2011, 7, 3708.



[33] Gu, G.; Xia, H.; Hu, Q.; Liu, Z.; Jiang, M.; Kang, T.; Miao, D.; Tu, Y.; Pang, Z.; Song, Q.; Yao, L.; Chen, H.; Gao, X.; Chen, J. Biomaterials 2013, 34, 196.

Outlines

/