Article

DNA-Based Electrochemically Transduced and Resettable Keypad Lock

  • Lin Chao ,
  • Zhai Wei ,
  • Fan Louzhen ,
  • Li Xiaohong
Expand
  • College of Chemistry, Beijing Normal University, Beijing, 100875

Received date: 2014-03-13

  Online published: 2014-05-22

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn.Project supported by the Natural Science Foundation of China (No.21073019) and the Major Research Plan of NSFC (No.21233003).

Abstract

DNA as a special biological molecular exhibits many advantages in designing addressable DNA logic gates, data storage and processing, which was based on the straightforward sequence-specific hybridization and the ability to specifically capture certain target molecules (e.g.protein, small molecules and metal ions).With the increased investigations it becomes highly important to protect information against illegal invasion at the molecular level.Although the unconventional molecular keypad lock provides a new approach for information protection and attracts increasing interest, the system with reset function is less developed.Under this situation, an electrochemically transduced keypad lock system with reset function could pave a new way for such a development.In this report, DNA containing PW17 was selected and self-assembled on the gold electrode.In the presence of 10 μmol/L Pb2+, Pb2+ induced the self-assembled DNA transformed into Pb2+-stabilized G-quadruplex.The formed Pb2+-stabilized G-quadruplex was investigated by differential pulse voltammetry, and a reduction peak at -0.365 V vs.Ag/AgCl was observed, which was due to the reduction of Pb2+existed in G-quadruplex.Based on the strong chelated interaction between Pb2+ and EDTA, EDTA could capture Pb2+from Pb2+-stabilized G-quadruplex to form Pb2+-EDTA, with G-quadruplex transforming into free DNA.Through alternatively applying Pb2+and EDTA, the reciprocal transformations between free DNA and Pb2+-stabilized G-quadruplex were achieved.Based on the results, with Pb2+and EDTA as inputs and self-assembled DNA on the gold electrode as work unit, an electrochemical DNA keypad lock was fabricated.The keypad lock was "ON" when subsequently inputting EDTA and Pb2+, and also it could be reset through applying 5 mmol/L EDTA.In contrast, the keypad lock was "OFF" when subsequently inputting Pb2+ and EDTA, and also it could be reset through applying 10 μmol/L Pb2+.Thus, the designed electrochemical keypad lock could be reset at least five times without signal lost.Based on the results, the keypad lock exhibited excellent resettable ability.

Cite this article

Lin Chao , Zhai Wei , Fan Louzhen , Li Xiaohong . DNA-Based Electrochemically Transduced and Resettable Keypad Lock[J]. Acta Chimica Sinica, 2014 , 72(6) : 709 -712 . DOI: 10.6023/A14030178

References

[1] Frezza, B.M.; Cockroft, S.L.; Ghadiri, M.R.J.Am.Chem.Soc.2007, 129, 14875.
[2] Pelossof, G.; Tel-Vered, R.; Elbaz, J.; Willner, I.Anal.Chem.2010, 82, 4396.
[3] Elbaz, J.; Shlyahovsky, B.; Willner, I.Chem.Commun.2008, 1569.
[4] Zhu, L.; Wang, H.; Sun, R.; Li, P.; Kong, D.; Li, X.Chin.J.Inorg.Chem.2013, 29, 2215.(朱莉娜, 王海仙, 孙润丰, 李平, 孔德明, 李孝增, 无机化学学报, 2013, 29, 2215.)
[5] Yu, Y.; Lu, J.; Wang, D.; Pei, H.; Fan, C.Chin.Sci.Bull.2013, 58, 131.(俞洋, 陆建华, 王东方, 裴昊, 樊春海, 科学通报, 2013, 58, 131.)
[6] Zhang, C.; Yang, J.; Xu, J.Chin.Sci.Bull.2011, 56, 2276.(张成, 杨静, 许进, 科学通报, 2011, 56, 2276.)
[7] Wang, Z.; Ning, L.; Duan, A.; Zhu, X.; Wang, H.; Li, G.Chem.Commun.2012, 48, 7507.
[8] Liu, Y.; Ren, J.; Qin, Y.; Li, J.; Liu, J.; Wang, E.Chem.Commun.2012, 48, 802.
[9] Margulies, D.; Felder, C.; Melman,G.; Shanzer, A.J.Am.Chem.Soc.2007, 129, 347.
[10] Guo, Z.; Zhu, W.; Shen, L.; Tian, H.Angew.Chem.2007, 119, 5645.
[11] Strack, G.; Ornatska, M.; Pita, M.; Katz, E.J.Am.Chem.Soc.2008, 130, 4234.
[12] Suresh, M.; Ghosh, A.; Das, A.Chem.Commun.2008, 3906.
[13] Sun, W.; Zhou, C.; Xu, C.; Fang, C.; Zhang, C.; Li, Z.; Yan, C.Chem.Eur.J.2008, 14, 6342.
[14] Jiang, W.; Han, M.; Zhang, H.; Zhang, Z.; Liu, Y.Chem.Eur.J.2009, 15, 9938.
[15] Andréasson, J.; Straight, S.; Moore, T.; Moore, A.; Gust, D.Chem.Eur.J.2009, 15, 3936.
[16] Kumar, S.; Luxami, V.; Saini, R.; Kaur, D.Chem.Commun.2009, 3044.
[17] Kumar, M.; Kumar, R.; Bhalla, V.Chem.Commun.2009, 7384.
[18] Kumar, M.; Dhir, A.; Bhalla, V.Org.Lett.2009, 11, 2567.
[19] Singh, P.; Kaur, J.; Holzer, W.Sens.Actuators.B-Chem.2010, 150, 50.
[20] Wang, J.; Ha, C.Analyst 2010, 135, 1214.
[21] Halámek, J.; Tam, T.; Chinnapareddy, S.; Bocharova, V.; Katz, E.J.Phys.Chem.Lett.2010, 1, 973.
[22] Zhou, M.; Zheng, X.L.; Wang, J.; Dong, S.Chem.Eur.J.2010, 16, 7719.
[23] Halámek, J.; Tam, T.K.; Strack, G.; Bocharova, V.; Pita, M.; Katz, E.Chem.Commun.2010, 46, 2405.
[24] Pu, F.; Liu, Z.; Yang, X.; Ren, J.; Qu, X.Chem.Commun.2011, 47, 6024.
[25] Pischel, U.Angew.Chem.2007, 119, 4100.
[26] Willner, I.; Katz, E.Angew.Chem.2000, 112, 1230.
[27] Liu, Y.; Offenhauesser, A.; Mayer, D.Angew.Chem.2010, 122, 2649.
[28] Hong, W.; Du, Y.; Wang, T.; Liu, J.Y.; Liu, Y.Q.; Wang, J.; Wang, E.K.Chem.Eur.J.2012, 18, 14939.
[29] Wei, Z.; Du, C.; Li, X.Chem.Commun.2014, 50, 2093.
Outlines

/