Article

Electronic Structures and Spectroscopy of Pyridyl Ru-phthalocyanine Photosensitizers

  • Zhang Mingjing ,
  • Pan Qingjiang ,
  • Guo Yuanru ,
  • Zhang Hongxing
Expand
  • a. Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080;
    b. Key Laboratory of Bio-based Material Science & Technology of Education Ministry, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040;
    c. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023

Received date: 2014-04-22

  Online published: 2014-05-14

Supported by

Project supported by National Natural Science Foundation of China (No.21273063), Program for New Century Excellent Talents in University (No.NCET-11-0958) and the Foundation of Heilongjiang Province for the Returned Overseas Chinese Scholars.

Abstract

It is well known that photosensitizers play a vital role in the dye-sensitized solar cells (DSSCs).Understanding of their structures and photophysical properties is necessary to enhance the photoelectric conversion efficiency of DSSCs.In this work, a series of sensitizers [PcRu(RPy)(Py-COOH)] (Pc=phthalocyanine, Py=pyridine, R=COOH, CN, H, Me and OMe) as well as their one- and two-electron oxidized derivatives have been investigated using density functional theory (DFT) and time-dependent DFT.Their structural and spectroscopic properties were addressed.Full optimization demonstrates the ruthenium center exhibits octahedral geometry with six nitrogen donors.One- and two-electron oxidation slightly shortens equatorial Ru-N bond lengths relative to neutral dyes, but lengthens their axial ones.The experimentally known RuPc-1 has been calculated to evaluate performance of various functionals, basis sets, computational models of solvent effect and solvent sorts.And the TD-BLYP/SDD/PCM/Ethanol approach was used for spectral calculation in the present work.The comparison among calculated absorption spectra reveals that the neutral complexes are more suitable for photosensitizers in dye-sensitized solar cells than their oxidized derivatives.Neutral dyes were calculated to display a strong Soret absorption peak at 350 nm and a relatively weak Q band at 600 nm.They were assigned as intra-phthalocyanine π→π* transition and Ru→Py-COOH metal-to-ligand charge transfer.As these dyes anchor to semiconductor photoanode by the carboxyl of axial pyridyl group, their π→π* transition has no contribution to the subsequent electron injection.Further association with above ruthenium dyes missing absorption between 400~580 nm in visible region elucidates why DSSCs sensitized by them have such a low overall conversion efficiency of photo to electricity.Building on the present results, it is suggested to fabricate a sensitizer like [((COOH)n-(Pc))Ru(L)2], where anchoring carboxylic acids are bonded to equatorial Pc macrocycle and strong electron-donating groups are axially introduced.With this arrangement, Ru center, donating L groups and Pc macrocycle (high-lying π occupied orbitals) all serve as electron donors, while Pc ligand (low-lying π* unfilled orbitals) and peripheral carboxylic substituents behave as electron-accepting reservoir.This in-progress work is anticipated to design dyes that improve the conversion efficiency of DSSCs.

Cite this article

Zhang Mingjing , Pan Qingjiang , Guo Yuanru , Zhang Hongxing . Electronic Structures and Spectroscopy of Pyridyl Ru-phthalocyanine Photosensitizers[J]. Acta Chimica Sinica, 2014 , 72(6) : 697 -703 . DOI: 10.6023/A14040310

References

[1] O’Regan, B.; Grfitzeli, M.Nature 1991, 353, 24.
[2] Grätzel, M.Nature 2001, 414(6861), 338.
[3] Grätzel, M.J.Photochem.Photobiol.C 2003, 4(2), 145.
[4] Yella, A.; Lee, H.W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Guang Diau, E.W.; Zakeeruddin, S.M.; Grätzel, M.Science 2011, 334(6056), 629.
[5] Wang, J.W.; Li, Y.; Xu, Y.L.; Li, Y.; Shen, K.H.Acta Chim.Sinica 2012, 70(11), 1278.(王纪伟, 李莹, 徐艳玲, 李杨, 申凯华, 化学学报, 2012, 70(11), 1278)
[6] Tang, X.; Wang, Y.X.Acta Chim.Sinica 2012, 71(02), 193.(唐笑, 汪禹汛, 化学学报, 2012, 71(02), 193.)
[7] Liang, M.; Xu, Y.J.; Wang, X.D.; Liu, X.J.; Sun, Z.; Xue, G.Acta Chim.Sinica 2011, 69(18), 2092.(梁茂, 徐英军, 王旭达, 刘秀杰, 孙喆, 薛松, 化学学报, 2011, 69(18), 2092.)
[8] He, J.J.; Chen, S.X.; Wang, T.T.; Zeng, H.P.Chin.J.Org.Chem.2012, 32, 472.(何俊杰, 陈舒欣, 王婷婷, 曾和平, 有机化学, 2012, 32, 472.)
[9] Zhang, Z.Y.; Han, J.L.; Li, X.; Cai, S.Y.; Su, J.H.Chin.J.Chem.2012, 30(12), 2779.
[10] Kuang, D.; Klein, C.; Ito, S.; Moser, J.E.; Humphry-Baker, R.; Zakeeruddin, S.M., Grätzel, M.Adv.Funct.Mater.2007, 17(1), 154.
[11] Chen, C.Y.; Chen, J.G.; Wu, S.J.; Li, J.Y.; Wu, C.G.; Ho, K.C.Angew.Chem., Int.Ed.2008, 47(38), 7342.
[12] Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.K.; Jing, X.Y.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S.M., Grätzel, M.J.Am.Chem.Soc.2008, 130(32), 10720.
[13] Nazeeruddin, M.K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M.J.Am.Chem.Soc.1993, 115(14), 6382.
[14] Rawling, T.; McDonagh, A.M.; Colbran, S.B.Inorg.Chim.Acta 2008, 361(1), 49.
[15] Rodriguez-Morgade, M.S.; Plonska-Brzezinska, M.E.; Athans, A.J.; Carbonell, E.; de Miguel, G.; Guldi, D.M.; Echegoyen, L.; Torres, T.J.Am.Chem.Soc.2009, 131(30), 10484.
[16] Rodríguez-Morgade, M.S.; Planells, M.; Torres, T.; Ballester, P.; Palomares, E.J.Mater.Chem.2008, 18(2), 176.
[17] Fischer, M.K.R.; López-Duarte, I.; Wienk, M.M.; Martínez-Díaz, M.V.; Janssen, R.A.J.; Bäuerle, P.; Torres, T.J.Am.Chem.Soc.2009, 131(24), 8669.
[18] Zhang, T.L.; Yan, J.M.Acta Chim.Sinica 2000, 58(8), 981.(张天莉, 严继民, 化学学报, 2000, 58(8), 981.)
[19] Morandeira, A.; López-Duarte, I.; O'Regan, B.; Martinez-Diaz, M.V.; Forneli, A.; Palomares, E.; Torres, T.; Durrant, J.R.J.Mater.Chem.2009, 19(28), 5016.
[20] O'Regan, B.C.; López-Duarte, I.; Martínez-Díaz, M.V.; Forneli, A.; Albero, J.; Morandeira, A.; Palomares, E.; Torres, T.; Durrant, J.R.J.Am.Chem.Soc.2008, 130(10), 2906.
[21] Morandeira, A.; López-Duarte, I.; Martínez-Díaz, M.V.; O'Regan, B.; Shuttle, C.; Haji-Zainulabidin, N.A.; Torres, T.; Palomares, E.; Durrant, J.R.J.Am.Chem.Soc.2007, 129(30), 9250.
[22] Reddy, P.Y.; Giribabu, L.; Lyness, C.; Snaith, H.J.; Vijaykumar, C.; Chandrasekharam, M.; Lakshmikantam, M.; Yum, J.H.; Kalyanasundaram, K.; Grätzel, M.Angew.Chem., Int.Ed.2007, 46(3), 373.
[23] Laikov, D.N.Chem.Phys.Lett.1997, 281(1), 151.
[24] Laikov, D.; Ustynyuk, Y.A.Russ.Chem.Bull.2005, 54(3), 820.
[25] Laikov, D.N.J.Comput.Chem.2007, 28(3), 698.
[26] Frisch, M.J.E.A.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford, CT, 2009, 200.
[27] Rawling, T.; McDonagh, A.Coord.Chem.Rev.2007, 251(9), 1128.
[28] Sievertsen, S.; Weidemann, M.; Hueckstaedt, H.; Homborg, H.J.Porphyrins Phthalocyanines 1997, 1(04), 379.
[29] Listorti, A.; López-Duarte, I.; Martinez-Diaz, M.V.; Torres, T.; DosSantos, T.; Barnes, P.R.F.; Durrant, J.R.Energy Environ.Sci.2010, 3(10), 1573.
[30] Yanagisawa, M.; Korodi, F.; He, J.; Sun, L.; Sundström, V.; Åkermark, B.J.Porphyrins Phthalocyanines 2002, 6(03), 217.
[31] Yanagisawa, M.; Korodi, F.; Bergquist, J.; Holmberg, A.; Hagfeldt, A.; Åkermark, B.; Sun, L.C.J.Porphyrins Phthalocyanines 2004, 8(10), 1228.
Outlines

/