Perspectives

Frustrated Lewis Pair Catalyzed Asymmetric Hydrogenation

  • Liu Yongbing ,
  • Du Haifeng
Expand
  • CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2014-04-30

  Online published: 2014-05-14

Supported by

Project supported by the National Natural Science Foundation of China (No. 21222207).

Abstract

Catalytic asymmetric hydrogenation of unsaturated substrates is one of the most important transformations in organic chemistry, which provides a significant approach to produce optically active compounds both in academia and chemical industry due to its atom-economy and high efficiency. Since the original work of Knowles and Sabacky in 1960s, transition-metal-catalyzed asymmetric hydrogenation has been well developed with great achievements. However, metal-free asymmetric hydrogenation utilizing molecular hydrogen is extremely challenging, and has long been an unsolved problem. Frustrated Lewis pairs (FLPs) with a combination of sterically encumbered Lewis acids and Lewis bases preclude the formation of classical Lewis acid-base adducts via dative bonds due to the steric effects, and they therefore possess novel and interesting properties and reactivities. Since frustrated Lewis pairs was first disclosed to enable heterolytic cleavage of H2 reversibly by Stephan and co-workers in 2006, its applications on activating various of small molecules such as H2, CO2, NO and catalytic hydrogenation of unsaturated compounds were reported. Asymmetric hydrogenation under H2 by metal-free catalysts has been realized and has witnessed important progress. In this perspective, the achievements on frustrated Lewis pair catalyzed asymmetric hydrogenation are discussed from two aspects: (1) asymmetric hydrogenation induced by chiral substrates; (2) asymmetric hydrogenation catalyzed by chiral frustrated Lewis pairs.

Cite this article

Liu Yongbing , Du Haifeng . Frustrated Lewis Pair Catalyzed Asymmetric Hydrogenation[J]. Acta Chimica Sinica, 2014 , 72(7) : 771 -777 . DOI: 10.6023/A14040344

References

[1] Knowles, W. S.; Sabacky, M. J. J. Chem. Soc. Chem. Commun. 1968, 1445.
[2] (a) Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998;
(b) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008;
(c) Ager, D. J.; de Vries, A. H. M.; de Vries, J. G. Chem. Soc. Rev. 2012, 41, 3340.
[3] (a) Zhou, Q.-L.; Xie, J.-H. Top. Curr. Chem. 2014, 343, 75;
(b) Li, W.; Zhang, X. Top. Curr. Chem. 2014, 343, 103;
(c) He, Y.-M.; Song, F.-T.; Fan, Q.-H. Top. Curr. Chem. 2014, 343, 145;
(d) Chen, Q.-A.; Ye, Z.-S.; Duan, Y.; Zhou, Y.-G. Chem. Soc. Rev. 2013, 42, 497;
(e) Zhao, B.; Han, Z.; Ding, K. Angew. Chem. Int. Ed. 2013, 52, 4744;
(f) Xie, J.; Zhou, Q. Acta Chim. Sinica 2012, 70, 1427 (谢建华, 周其林, 化学学报, 2012, 70, 1427.);
(g) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Soc. Rev. 2012, 41, 4126;
(h) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557;
(i) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713;
(j) He, Y.-M.; Fan, Q.-H. Org. Biomol. Chem. 2010, 8, 2497;
(k) Wang, Z.; Chen, G.; Ding, K. Chem. Rev. 2009, 109, 322;
(l) Guo, H.-C.; Ding, K.-L.; Dai, L.-X. Chin. Sci. Bull. 2004, 49, 1575 (郭红超, 丁奎岭, 戴立信, 科学通报, 2004, 49, 1575.);
(m) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
[4] (a) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498;
(b) de Vries, J. G.; Mršić, N. Catal. Sci. Technol. 2011, 1, 727;
(c) Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett 2010, 852;
(d) Ouellet, S. G.; Walji, A. M.; Macmillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327;
(e) Chen, Q.-A.; Chen, M.-W.; Yu, C.-B.; Shi, L.; Wang, D.-S.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2011, 133, 16432;
(f) Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi, L.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2012, 134, 2442;
(g) Chen, Z.-P.; Chen, M.-W.; Guo, R.-N.; Zhou, Y.-G. Org. Lett. 2014, 16, 1406.
[5] Lewis, G. N. Valence and the Structure of Atoms and Molecules, Chemical Catalogue Company, New York, 1923.
[6] Brown, H. C.; Schlesinger, H. I.; Cardon, S. Z. J. Am. Chem. Soc. 1942, 64, 325.
[7] Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.
[8] Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880.
[9] (a) McCahill, J. S. J.; Welch, G. C.; Stephan, D. W. Angew. Chem. Int. Ed. 2007, 46, 4968;
(b) Stephan, D. W. Org. Biomol. Chem. 2008, 6, 1535.
[10] Peng, B.; Nie, Y. China Terminology 2010, 12, 44. (彭斌, 聂永, 中国科技术语, 2010, 12, 44.)
[11] Wang, P.; Sun, X.; Gao, P. Chin. J. Org. Chem. 2011, 31, 1369. (王平安, 孙晓莉, 高鹏, 有机化学, 2011, 31, 1369.)
[12] Xu, Y.; Li, Z.; Maxim, B.; Nie, W. Prog. Chem. 2012, 24, 1526. (徐莹莹, 李钊, Maxim Borzov, 聂万丽, 化学进展, 2012, 24, 1526.)
[13] (a) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. 1984, 106, 451;
(b) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95.
[14] Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.
[15] Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 12232.
[16] (a) Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. Angew. Chem. Int. Ed. 2008, 47, 2435;
(b) Guo, Y.; Li, S. Inorg. Chem. 2008, 47, 6212;
(c) Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 1402;
(d) Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. J. Am. Chem. Soc. 2013, 135, 4425.
[17] Lu, Z.; Cheng, Z.; Chen, Z.; Weng, L.; Li, Z. H.; Wang, H. Angew. Chem. Int. Ed. 2011, 50, 12227.
[18] Möming, C. M.; Otten, E.; Kehr, G.; Frölich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2009, 48, 6643.
[19] Cardenas, A. J. P.; Culotta, B. J.; Warren, T. H.; Grimme, S.; Stute, A.; Frölich, R.; Kehr, G.; Erker, G. Angew. Chem. Int. Ed. 2011, 50, 7567.
[20] Neu, R. C.; Otten, E.; Lough, A.; Stephan, D. W. Chem. Sci. 2011, 2, 170.
[21] Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.; Wiegand, T.; Eckert, H.; Lough, A. J.; Fröhlich, R.; Daniliuc, C. G.; Grimme, S.; Stephan, D. W.; Kehr, G.; Erker, G. Chem. Sci. 2013, 4, 213.
[22] Möming, C. M.; Fröel, S.; Kehr, G.; Frölich, R.; Grimme, S.; Erker, G. J. Am. Chem. Soc. 2009, 131, 12280.
[23] Dureen, M. A.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 8396.
[24] (a) Stephan, D. W. Dalton Trans. 2009, 3129;
(b) Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2010, 49, 46;
(c) Soós, T. Pure Appl. Chem. 2011, 83, 667;
(d) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740;
(e) Erker, G. Pure Appl. Chem. 2012, 84, 2203;
(f) Paradies, J. Synlett 2013, 24, 777;
(g) Paradies, J. Angew. Chem. Int. Ed. 2014, 53, 3552.
[25] (a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem. Int. Ed. 2007, 46, 8050;
(b) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. Angew. Chem. Int. Ed. 2008, 47, 7543;
(c) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117;
(d) Jiang, C.; Blacque, O.; Berke, H. Chem. Commun. 2009, 5518;
(e) Rokob, T. A.; Hamza, A.; Stirling, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 2029;
(f) Axenov, K. V.; Kehr, G.; Fröhlich, R.; Erker, G. J. Am. Chem. Soc. 2009, 131, 3454;
(g) Erös, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. Angew. Chem. Int. Ed. 2010, 49, 6559;
(h) Farrell, J. M.; Hatnean, J. A.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 15728;
(i) Thomson, J. W.; Hatnean, J. A.; Hastie, J. J.; Pasternak, A.; Stephan, D. W.; Chase, P. A. Org. Process Res. Dev. 2013, 17, 1287.
[26] (a) Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Commun. 2010, 46, 4884;
(b) Erös, G.; Nagy, K.; Mehdi, H.; Pápai, I.; Nagy, P.; Király, P.; Tárkányi, G.; Soós, T. Chem. Eur. J. 2012, 18, 574;
(c) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 12968.
[27] (a) Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966;
(b) Greb, L.; Oña-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem. Int. Ed. 2012, 51, 10164;
(c) Inés, B.; Palomas, D.; Holle, S.; Steinberg, S.; Nicasio, J. A.; Alcarazo, M. Angew. Chem. Int. Ed. 2012, 51, 12367;
(d) Greb, L.; Daniliuc, C.-G.; Bergander, K.; Paradies, J. Angew. Chem. Int. Ed. 2013, 52, 5876;
(e) Hounjet, L. J.; Bannwarth, C.; Garon, C. N.; Caputo, C. B.; Grimme, S.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 7492;
(f) Wang, Y.; Chen, W.; Lu, Z.; Li, Z. H.; Wang, H. Angew. Chem. Int. Ed. 2013, 52, 7496.
[28] (a) Xu, B.-H.; Kehr, G.; Fröhlich, R.; Wibbeling, B.; Schirmer, B.; Grimme, S.; Erker, G. Angew. Chem. Int. Ed. 2011, 50, 7183;
(b) Chernichenko, K.; Madarász, á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. Nat. Chem. 2013, 5, 718.
[29] Segawa, Y.; Stephan, D. W. Chem. Commun. 2012, 48, 11963.
[30] Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.
[31] Chen, D.; Klankermayer, J. Chem. Commun. 2008, 2130.
[32] Heiden, Z. M.; Stephan, D. W. Chem. Commun. 2011, 47, 5729.
[33] Chen, D.; Wang, Y.; Klankermayer, J. Angew. Chem. Int. Ed. 2010, 49, 9475.
[34] Ghattas, G.; Chen, D.; Pan, F.; Klankermayer, J. Dalton Trans. 2012, 41, 9026.
[35] (a) Sumerin, V.; Schulz, F.; Nieger, M.; Leskela, M.; Repo, T.; Rieger, B. Angew. Chem. Int. Ed. 2008, 47, 6001;
(b) Schulz, F.; Sumerin, V.; Heikkinen, S.; Pedersen, B.; Wang, C.; Atsumi, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Petry, W.; Rieger, B. J. Am. Chem. Soc. 2011, 133, 20245.
[36] Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Adv. Synth. Catal. 2011, 353, 2093.
[37] Cao, Z.; Du, H. Org. Lett. 2010, 12, 2602.
[38] Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 6810.
[39]Stephan, D. W.; Greenberg, S.; Graham, T. W.; Chase, P.; Hastie, J. J.; Geier, S. J.; Farrell, J. M.; Brown, C. C.; Heiden, Z. M.; Welch, G. C.; Ullrich, M. Inorg. Chem. 2011, 50, 1233.
Outlines

/