Advances in Mesoporous Metal Phosphonate Hybrid Materials
Received date: 2014-02-06
Online published: 2014-04-21
Supported by
Project supported by the National Natural Science Foundation of China (No. 21073099), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110031110016), the Program for Innovative Research Team in University (No. IRT13022) and the 111 project (No. B12015).
During the development of multifunctional and advanced energy materials, mesoporous organic-inorganic metal phosphonate hybrids are considered as a promising candidate for environmentally friendly materials with multifunctionalities, which have attracted much attention because of the combination of superior properties from both the organic and inorganic components. They are not just physical mixtures of organic and inorganic moieties, but regarded as nanocomposites with organic and inorganic components that are intimately mixed on a molecular level. By using organically bridged polyphos-phonic acids and their derivatives (i.e. salts and esters) as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the hybrid framework has been realized. Furthermore, the incorporation of mesoporosity with high surface area, adjustable pore size and large pore volume could contribute to the enhanced performances in various areas. This paper systematically reviewed the synthesis principle of the mesoporous metal phosphonates including the synthesis mechanism, mesophase adjustment, pore size control, morphological design and the crystallinity enhancement. The applications of these materials in the fields of adsorption, separation, catalysis, biosensing and controlled drug release were elaborated and the further development and the perspective of the mesoporous phosphonate were expected.
Key words: mesoporous; metal phosphonate; organic-inorganic hybrid; adsorption; catalysis
Liu Yalu , Zhu Yunpei , Li Min , Yuan Zhongyong . Advances in Mesoporous Metal Phosphonate Hybrid Materials[J]. Acta Chimica Sinica, 2014 , 72(5) : 521 -536 . DOI: 10.6023/A14020092
[1] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W. J. Am. Chem. Soc. 1992, 114, 10834.
[2] Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[3] Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y. Nat. Mater. 2003, 2, 159.
[4] Wan, Y.; Shi, Y. F.; Zhao, D. Y. Chem. Commun. 2007, 897.
[5] Zhu, Y. P.; Li, J.; Ma, T. Y.; Liu, Y. P.; Du, G. H.; Yuan, Z. Y. J. Mater. Chem. A 2014, 1093.
[6] Ma, H.; Liu, W. W.; Zhu, S. W.; Fan, Y. S.; Cheng, B. J. Acta Chim. Sinica 2012, 70, 2353. (马欢, 刘伟伟, 朱苏文, 樊芸杉, 程备久, 化学学报, 2012, 70, 2353.)
[7] Xie, Y. L.; Zhong, G.; Du, G. H. Acta Chim. Sinica 2012, 70, 1221. (谢云龙, 钟国, 杜高辉, 化学学报, 2012, 70, 1221.)
[8] Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. New J. Chem. 2014, 38, 1905.
[9] Soler-lllia, G. J. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev. 2002, 102, 4093.
[10] Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867.
[11] Inagaki, S.; Guan, S. Y.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.
[12] Kimura, T.; Nakashima, D.; Miyamoto, N. Chem. Lett. 2009, 38, 916.
[13] Kimura, T.; Yamauchi, Y. Chem. Asian J. 2013, 8, 160.
[14] Ma, T. Y.; Yuan, Z. Y. Chem. Commun. 2010, 46, 2325.
[15] Dutta, A.; Pramanik, M.; Patra, A. K.; Nandi, M.; Uyama, H.; Bhaumik, A. Chem. Commun. 2012, 48, 6738.
[16] Alberti, G.; Costantino, U.; Marmottini, F.; Vivani, R.; Zapelli, P. Microporous Mesoporous Mater. 1998, 21, 297.
[17] Alberti, G.; Vivani, R.; Marmottini, F.; Zappelli, P. J. Porous Mater. 1998, 5, 205.
[18] Vasylyev, M. V.; Wachtel, E. J.; Popovitz-Biro, R.; Neumann, R. Chem. Eur. J. 2006, 12, 3507.
[19] Vasylyev, M.; Neumann, R. Chem. Mater. 2006, 18, 2781.
[20] Kimura, T. Chem. Mater. 2003, 15, 3742.
[21] Kimura, T. Chem. Mater. 2005, 17, 337.
[22] Kimura, T. Chem. Mater. 2005, 17, 5521.
[23] Zhu, Y. P.; Liu, Y. L.; Ren, T. Z.; Yuan, Z. Y. RSC Adv. 2014, 4, 16018
[24] Ma, T. Y.; Lin, X. Z.; Zhang, X. J.; Yuan, Z. Y. Nanoscale 2011, 3, 1690.
[25] Zhang, X. J.; Ma, T. Y.; Yuan, Z. Y. Eur. J. Inorg. Chem. 2008, 2721.
[26] Ma, T. Y.; Zhang, X. J.; Yuan, Z. Y. Microporous Mesoporous Mater. 2009, 123, 234.
[27] Zhang, X. J.; Ma, T. Y.; Yuan, Z. Y. Chem. Lett. 2008, 37, 746.
[28] Pramanik, M.; Nandi, M.; Uyama, H.; Bhaumik, A. Catal. Sci. Technol. 2012, 2, 613.
[29] Pramanik, M.; Nandi, M.; Uyama, H.; Bhaumik, A. Green Chem. 2012, 14, 2273.
[30] Ma, T. Y.; Yuan, Z. Y. Eur. J. Inorg. Chem. 2010, 2010, 2941.
[31] Li, W.; Zhao, D. Y. Chem. Commun. 2013, 49, 943.
[32] Ma, T. Y.; Liu, L.; Yuan, Z. Y. Chem. Soc. Rev. 2013, 42, 3977.
[33] Fischereder, A.; Martinez-Ricci, M. L.; Wolosiuk, A.; Haas, W.; Hofer, F.; Trimmel, G. Soler-lllia, G. J. A. A. Chem. Mater. 2012, 24, 1837.
[34] Rabatic, B. M.; Pralle, M. U.; Tew, G. N.; Stupp, S. I. Chem. Mater. 2003, 15, 1249.
[35] Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. J. Am. Chem. Soc. 2002, 124, 9382.
[36] Baumann, T. F.; Satcher, J. H. Chem. Mater. 2003, 15, 3745.
[37] Haskouri, J. E.; Guillem, C.; Latorre, J.; Beltrán, D.; Amorós, P. Chem. Mater. 2004, 16, 4359.
[38] Haskouri, J. E.; Guillem, C.; Latorre, J.; Beltrán, A.; Beltrán, D.; Amorós, P. Eur. J. Inorg. Chem. 2004, 2004, 1804.
[39] Ma, T. Y.; Lin, X. Z.; Yuan, Z. Y. J. Mater. Chem. 2010, 20, 7406.
[40] Bhaumik, A.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 691.
[41] Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
[42] Gallis, K. W.; Landry, C. C. Chem. Mater. 1997, 9, 2035.
[43] Kim, W. J.; Yoo, J. C.; Hayhurst, D. T. Microporous Mesoporous Mater. 2001, 49, 125.
[44] Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
[45] Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L. Chem. Mater. 1994, 6, 2317.
[46] Kimura, T.; Kato, K.; Yamauchi, Y. Chem. Commun. 2009, 4938.
[47] Deng, Y. H.; Wei, J.; Sun, Z. K.; Zhao, D. Y. Chem. Soc. Rev. 2013, 42, 4054.
[48] Ma, T. Y.; Lin, X. Z.; Yuan, Z. Y. Chem. Eur. J. 2010, 16, 8487.
[49] Ma, T. Y.; Yuan, Z. Y. Dalton Trans. 2010, 39, 9570.
[50] Kimura, T.; Kato, K. J. Mater. Chem. 2007, 17, 559.
[51] Ma, T. Y.; Wei, Y. S.; Ren, T. Z.; Liu, L.; Guo, Q.; Yuan, Z. Y. ACS Appl. Mater. Interfaces 2010, 2, 3563.
[52] Zhu, Y. P.; Ma, T. Y.; Ren, T. Z.; Li, J.; Du, G. H.; Yuan, Z. Y. Appl. Catal. B: Environ. 2014, 156~157, 44.
[53] Blin, J. L.; Otjacques, C.; Herrier, G.; Su, B. L. Langmuir 2000, 16, 4229.
[54] Sun, J. M.; Zhang, H.; Ma, D.; Chen, Y. Y.; Bao, X. H.; Klein- Hoffmann, A.; Pfänder, N.; Su, D. S. Chem. Commun. 2005, 5343.
[55] Kimura, T.; Suzuki, N.; Gupta, P.; Yamauchi, Y. Dalton Trans. 2010, 39, 5139.
[56] Kimura, T.; Kato, K. New J. Chem. 2007, 31, 1488.
[57] Araujo, P. Z.; Luca, V.; Bozzano, P. B.; Bianchi, H. L.; Soler-lllia, G. J. A. A.; Blesa, M. A. ACS Appl. Mater. Interfaces 2010, 2, 1663.
[58] Kimura, T.; Yamauchi, Y. Langmuir 2012, 28, 12901.
[59] Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem., Int. Ed. 1999, 38, 56.
[60] Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169.
[61] Shibata, H.; Ogura, T.; Mukai, T.; Ohkubo, T.; Sakai, H.; Abe, M. J. Am. Chem. Soc. 2005, 127, 16396.
[62] Chen, H. Y.; Xi, H. X.; Cai, X. Y.; Qian, Y. Microporous Mesoporous Mater. 2009, 118, 396.
[63] Wu, Y. J.; Ren, X. Q.; Wang, J. Microporous Mesoporous Mater. 2008, 116, 386.
[64] Conner, W. C.; Tompsett, G.; Lee, K. H.; Yngvesson, K. S. J. Phys. Chem. B 2004, 108, 13913.
[65] Ma, T. Y.; Li, H.; Tang, A. N.; Yuan, Z. Y. Small 2011, 7, 1827.
[66] Liu, L.; Ma, T. Y.; Yuan, Z. Y. Petrochem. Technol. 2011, 40, 237.
[67] Méndez, A.; Gascó, G.; Freitas, M. M. A.; Siebielec, G.; Stuczynski, T.; Figueiredo, J. L. Chem. Eur. J. 2005, 108, 169.
[68] Dai, S.; Burleigh, M. C.; Shin, Y.; Morrow, C. C.; Barnes, C. E.; Xue, Z. L. Angew. Chem., Int. Ed. 1999, 38, 1235.
[69] Liu, A. M.; Hidajat, K.; Kawi, S.; Zhao, D. Y. Chem. Commun. 2000, 1145.
[70] Hossain, K. Z.; Mercier, L. Adv. Mater. 2002, 14, 1053.
[71] Ma, T. Y.; Zhang, X. J.; Yuan, Z. Y. J. Phys. Chem. C 2009, 113, 12854.
[72] Ma, T. Y.; Yuan, Z. Y. ChemSusChem 2011, 4, 1407.
[73] Ren, T. Z.; Zhu, X. H.; Ma, T. Y.; Yuan, Z. Y. Adsorpt. Sci. Technol. 2013, 31, 535.
[74] Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.; Ming, L. J.; Musselman, R. L.; Ma, S. Q. J. Am. Chem. Soc. 2011, 133, 10382.
[75] Zhu, Y. P.; Liu, Y. L.; Ren, T. Z.; Yuan, Z. Y. Nanoscale 2014, DOI: 10.1039/C4NR00629A.
[76] Knowles, G. P.; Delaney, S. W.; Chaffee, A. L. Ind. Eng. Chem. Res. 2006, 45, 2626.
[77] Martavaltzi, C. S.; Lemonidou, A. A. Microporous Mesoporous Mater. 2008, 110, 119.
[78] Liu, L.; Deng, Q. F.; Hou, X. X.; Yuan, Z. Y. J. Mater. Chem. 2012, 22, 15540.
[79] Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.
[80] Wang, B.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207.
[81] Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Science 2010, 329, 424.
[82] Gu, Z. Y.; Yan, X. P. Angew. Chem., Int. Ed. 2010, 49, 1477.
[83] Clearfield, A. Dalton Trans. 2008, 6089.
[84] Gagnon, K. J.; Perry, H. P.; Clearfield, A. Chem. Rev. 2012, 112, 1034.
[85] Li, J. Q.; Li, Q. L.; Zhao, J. X.; Li, B. R. Acta Chim. Sinica 2010, 68, 1845. (李建强, 李巧玲, 赵静贤, 李冰茹, 化学学报, 2010, 68, 1845.)
[86] Zhao, L. W.; He, P.; Du, X.; He, J. H. Acta Chim. Sinica 2011, 69, 1087. (赵立薇, 何溥, 杜鑫, 贺军辉, 化学学报, 2011, 69, 1087.)
[87] Li, H. X.; Li, J. X.; Huo, Y. N. J. Phys. Chem. B 2006, 110, 1559.
[88] Sibu, C. P.; Kumar, S. R.; Mukundan, P.; Warrier, K. G. K. Chem. Mater. 2002, 14, 2876.
[89] Ma, T. Y.; Zhang, X. J.; Shao, G. S.; Cao, J. L.; Yuan, Z. Y. J. Phys. Chem. C 2008, 112, 3090.
[90] Jones, D. J.; Aptel, G.; Brandhorst, M.; Jacquin, M.; Jiménez- Jiménez, J.; Jiménez-López, A.; Maireles-Torres, P.; Piwonski, I.; Rodríguez-Castellón, E.; Zajac, J.; Rozière, J. J. Mater. Chem. 2000, 10, 1957.
[91] Ma, T. Y.; Liu, L.; Deng, Q. F.; Lin, X. Z.; Yuan, Z. Y. Chem. Commun. 2011, 47, 6015.
[92] Goesten, M. G.; Juan-Alcañiz, J.; Ramos-Fernandez, E. V.; Sai Sankar Gupta, K. B.; Stavitski, E.; Bekkum, H. V.; Gascon, J.; Kapteijn, F. J. Catal. 2011, 281, 177.
[93] Gupta, K. C.; Sutar, A. K. Coord. Chem. Rev. 2008, 252, 1420.
[94] Rives, V.; Dubey, A.; Kannan, S. Phys. Chem. Chem. Phys. 2001, 3, 4826.
[95] Perry, H. P.; Law, J.; Zon, J.; Clearfield, A. Microporous Mesoporous Mater. 2012, 149, 172.
[96] Liu, X. Y.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li, J. Chem. Mater. 2009, 21, 410.
[97] Dutta, A.; Mondal, J.; Patra, A. K.; Bhaumik, A. Chem. Eur. J. 2012, 18, 13372.
[98] Riadi, Y.; Mamouni, R.; Azzalou, R.; Haddad, M. E.; Routier, S.; Guillaumet, G.; Lazar, S. Tetrahedron Lett. 2011, 52, 3492.
[99] Anastas, P. T. Green Chem. 2003, 5, 29.
[100] Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155.
[101] Yang, D. A.; Cho, H. Y.; Kim, J.; Yang, S. T.; Ahn, W. S. Energy Environ. Sci. 2012, 5, 6465.
[102] Ren, Y. W.; Shi, Y. C.; Chen, J. X.; Yang, S. R.; Qi, C. R.; Jiang, H. F. RSC Adv. 2013, 3, 2167.
[103] Kim, J.; Kim, S. N.; Jang, H. G.; Seo, G.; Ahn, W. S. Appl. Catal. A 2013, 453, 175.
[104] Zalomaeva, O. V.; Chibiryaev, A. M.; Kovalenko, K. A.; Kholdeeva, O. A.; Balzhinimaev, B. S.; Fedin, V. P. J. Catal. 2013, 298, 179.
[105] Miao, C. X.; Wang, J. Q.; Wu, Y.; Du, Y.; He, L. N. ChemSusChem 2008, 1, 236.
[106] Cho, H. Y.; Yang, D. A.; Kim, J.; Jeong, S. Y.; Ahn, W. S. Catal. Today 2012, 185, 35.
[107] Huang, Z. J.; Li, F. B.; Chen, B. F.; Lu, T.; Yuan, Y.; Yuan, G. Q. Appl. Catal. B 2013, 136~137, 269.
[108] Li, K.; Yang, G. Q.; Liu, Y. Y.; Zhang, W. B. Chin. J. Org. Chem. 2013, 33, 749. (李昆, 杨国强, 刘媛媛, 张万斌, 有机化学, 2013, 33, 749.)
[109] Liu, L.; Ma, H. L.; Wu, Y. H.; Yuan, D. K.; Liu, J. P.; Fu, B.; Ma, X. D. Chin. J. Org. Chem. 2013, 33, 2283. (刘磊, 麻红利, 吴燕华, 袁德凯, 刘吉平, 傅滨, 马晓东, 有机化学, 2013, 33, 2283.)
[110] Li, X. N.; Zhang, P. L.; Duan, K.; Wang, J. X. Chin. J. Org. Chem. 2012, 32, 19. (李小娜, 张鹏亮, 段凯, 王家喜, 有机化学, 2012, 32, 19.)
[111] Pan, S. Q.; Zhang, C. H.; Li, Y.; Yan, S. J.; Lin, J. Chin. J. Org. Chem. 2011, 31, 193. (潘圣强, 张从海, 李烨, 严胜娇, 林军, 有机化学, 2011, 31, 193.)
[112] Tang, Q.; Tu, A. P.; Deng, Z. Z.; Hu, M. Y.; Zhong, W. H. Chin. J. Org. Chem. 2013, 33, 954. (唐谦, 涂爱平, 邓真真, 胡梦莹, 钟为慧, 有机化学, 2013, 33, 954.)
[113] Shi, X.; Yang, J.; Yang, Q. H. Eur. J. Inorg. Chem. 2006, 1936.
[114] Ji, Y. L.; Ma, X. B.; Wu, X. J.; Wang, N.; Wang, Q.; Zhou, X. L. Catal. Lett. 2007, 118, 187.
[115] Calogero, S.; Lanari, D.; Orrù, M.; Piermatti, O.; Pizzo, F.; Vaccaro, L. J. Catal. 2011, 282, 112.
[116] Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524.
[117] Song, F. J.; Wang, C.; Falkowski, J. M.; Ma, L. Q.; Lin, W. B. J. Am. Chem. Soc. 2010, 132, 15390.
[118] Shi, X.; Li, J. P.; Tang, Y.; Yang, Q. H. J. Mater. Chem. 2010, 20, 6495.
[119] Tang, Y.; Ren, Y. B.; Shi, X. Inorg. Chem. 2013, 52, 1388.
[120] Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z.; Tran, S.; Lin, W. J. Am. Chem. Soc. 2009, 131, 14261.
[121] Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Angew. Chem., Int. Ed. 2006, 45, 5974.
[122] Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
[123] Li, H.; Ma, T. Y.; Kong, D. M.; Yuan, Z. Y. Analyst 2013, 138, 1084.
[124] Ma, T. Y.; Li, H.; Deng, Q. F.; Liu, L.; Ren, T. Z.; Yuan, Z. Y. Chem. Mater. 2012, 24, 2253.
[125] Zhu, Y. P.; Ma, T. Y.; Liu, Y. L.; Ren, T. Z.; Yuan, Z. Y. Inorg. Chem. Frontiers 2014, DOI: 10.1039/C4QI00011K.
/
〈 |
|
〉 |