Article

Synthesis and Characterization of Camptothecin/Graphene Oxide/Hydrotalcite-like Compounds Nanohybrids

  • Wu Xiaowen ,
  • Du Na ,
  • Li Haiping ,
  • Zhang Renjie ,
  • Hou Wanguo
Expand
  • Key Laboratory of Colloid and Interface Chemistry Ministry of Education, Shandong University, Jinan 250100, China

Received date: 2014-03-04

  Online published: 2014-06-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21173135, 21273135) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110131130008)

Abstract

A nanohybrid of the charge-neutral and poorly water-soluble anticancer drug camptothecin (CPT)/graphene oxide (GO)/Mg-Al hydrotalcite-like compounds (HTlc) was synthesized using a coassembly route. For the coassembly route, CPT molecules were initially loaded on the surface of GO nanosheets; the resulting negatively charged CPT-loaded GO nanosheets and the positively charged HTlc nanosheets were then coassembled together into the layered CPT/GO/HTlc nanohybrid, in which the GO nanosheets and the HTlc nanosheets were alternatively stacked and the CPT molecules were located in its interlayer gallery. The so-obtained nanohybrid was characterized using X-ray diffraction, transmission electron microscope, atomic force microscope, scanning electron microscope-energy dispersive spectrometer, Fourier transform infrared spectrometer, ultraviolet-visible spectrophotometry and thermogravimetric analysis/differential scanning calorimetry technique. The mass ratio of GO to HTlc nanosheets in the nanohybrid was 0.63. The loading amount of CPT on the GO nanosheets was 61.0 mg/g, and that in the nanohybrid was 13.4 mg/g. The d-spacing of the CPT/GO composite and the nanohybrid were 0.84 and 1.35 nm, respectively. The in vitro release of CPT from the nanohybrid was examined in pH 7.4 and 4.0 phosphate buffer solutions at 37 ℃. The results showed that the drug release process could be described with pseudo-second order kinetic model, and exhibited strong pH dependence, namely, the release rate and the percentage release in pH 4.0 buffer were evidently higher than those in pH 7.4 buffer. The pH dependence of CPT release is due to a possible difference in the release mechanism. The CPT release in pH 7.4 buffer was a diffusion-controlled process and the intraparticle diffusion was the rate-limiting step; in pH 4.0 buffer, the dissolution of HTlc layers and the weakening of π-π interaction between CPT and GO also played an important role for CPT release. The maximum percentage releases of CPT from the nanohybrid in pH 7.4 and 4.0 buffers were about 26.8% and 31.1%, respectively, higher than that from CPT/GO composites. The coassembly method is a simple route for building drug/GO/HTlc nanohybrids, and the nanohybrids have potential applications in drug delivery.

Cite this article

Wu Xiaowen , Du Na , Li Haiping , Zhang Renjie , Hou Wanguo . Synthesis and Characterization of Camptothecin/Graphene Oxide/Hydrotalcite-like Compounds Nanohybrids[J]. Acta Chimica Sinica, 2014 , 72(8) : 963 -969 . DOI: 10.6023/A14030146

References

[1] Liu, Z. F. Acta Chim. Sinica 2014, 72, 267. (刘忠范, 化学学报, 2014, 72, 267.)

[2] Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. Chim. Sin. 2010, 26, 2073. (胡耀娟, 金娟, 张卉, 吴萍, 蔡称心, 物理化学学报, 2010, 26, 2073.)

[3] Liu, J. Q.; Cui, L.; Losic, D. Acta Biomaterialia 2013, 9, 9243.

[4] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 13, 10876.

[5] Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Small 2010, 6, 537.

[6] Yang, X. Y.; Zhang, X. Y.; Liu, Z. F.; Ma, Y. F.; Huang, Y.; Chen, Y. S. J. Phys. Chem. C 2008, 112, 17554.

[7] Li, X.; Zhao, D. L.; Bai, L. Z.; Li, F.; Zhao, H. J.; Gao, L. F. J. Funct. Mater. 2013, 44(1), 96. (李晓, 赵东林, 白利忠, 李峰, 赵海静, 高龙飞, 功能材料, 2013, 44(1), 96.)

[8] Gao, J.; Bao, F.; Feng, L. L.; Shen, K. Y.; Zhu, Q. D.; Wang, D. F.; Chen, T.; Ma, R.; Yan, C. J. RSC Adv. 2011, 1, 1737.

[9] Fan, X. J.; Jiao, G. Z.; Zhao, W.; Jin, P. F.; Li, X. Nanoscale 2013, 5, 1143.

[10] Xu, Z. Y.; Li, Y. J.; Shi, P.; Wang, B. C.; Huang, X. Y. Chin. J. Org. Chem. 2013, 33, 573. (徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 573.)

[11] Xu, Z. Y.; Li, Y. J.; Shi, P.; Wang, B. C.; Huang, X. Y. Chin. J. Org. Chem. 2013, 33, 2162. (徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 2162.)

[12] Wang, C. S.; Li, J. Y.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. M. Angew. Chem. Int. Ed. 2011, 50, 11644.

[13] Yang, X. Y.; Wang, Y. S.; Huang, X.; Ma, Y. F.; Huang, Y.; Yang, R. C.; Duan, H. Q.; Chen, Y. S. J. Mater. Chem. 2011, 21, 3448.

[14] Wang, Y.; Zhang, D.; Bao, Q.; Wu, J. J.; Wan, Y. J. Mater. Chem. 2012, 22, 23106.

[15] Li, F.; Duan, X. Struct. Bond. 2006, 119, 193.

[16] Zhang, X. Q.; Zeng, M. G.; Li, S. P. Acta Chim. Sinica 2013, 71, 246. (张晓晴, 曾美桂, 李淑萍, 化学学报, 2013, 71, 246.)

[17] Ma, X. M.; Pang, X. J.; Quan, Z. L.; Hou, W. G. Chem. J. Chin. Univ. 2013, 34, 913. (马秀明, 庞秀江, 全贞兰, 侯万国, 高等学校化学学报, 2013, 34, 913.)

[18] Xia, Z. Y.; Du, N.; Liu, J. Q.; Hou, W. G. Chem. J. Chin. Univ. 2013, 34, 596. (夏志勇, 杜娜, 刘建强, 侯万国, 高等学校化学学报, 2013, 34, 596.)

[19] Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124.

[20] Mousty, C.; Kaftan, O.; Prevot, V.; Forano, C. Sens. Actuators B: Chem. 2008, 133, 442.

[21] An, Z.; Lu, S.; He, J.; Wang, Y. Langmuir 2009, 25, 10704.

[22] Bellezza, F.; Alberani, A.; Posati, T.; Tarpani, L.; Latterini, L.; Cipiciani, A. J. Inorg. Biochem. 2012, 106, 134.

[23] Bellezza, F.; Cipiciani, A.; Latterini, L.; Posati, T.; Sassi, P. Langmuir 2009, 25, 10918.

[24] Wu, X. W.; Wang, S.; Du, N.; Zhang, R. J.; Hou, W. G. J. Solid State Chem. 2013, 203, 181.

[25] Zhu, H.; Huang, S.; Yang, Z.; Liu, T. X. J. Mater. Chem. 2011, 21, 2950.

[26] Fu, P. J.; Xu, K. L.; Song, H. Z.; Chen, G. M.; Yang, J. P.; Niu, Y. H. J. Mater. Chem. 2010, 20, 3869.

[27] Lu, X. M.; Meng, L. M.; Li, H. P.; Du, N.; Zhang, R. J.; Hou, W. G. Mater. Res. Bull. 2013, 48, 1512.

[28] Wu, X. W.; Li, H. P.; Song, S.; Zhang, R. J.; Hou, W. G. Int. J. Pharm. 2013, 454, 453.

[29] Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47, 3556.

[30] Li, B.; Zhao, Y. F.; Zhang, S. T.; Gao, W.; Wei, M. ACS Appl. Mater. Interfaces 2013, 5, 10233.

[31] Yang, Z.; Ji, S. S.; Gao, W.; Zhang, C.; Ren, L. L.; Tjiu, W. W.; Zhang, Z.; Pan, J. S.; Liu, T. X. J. Colloid Interface Sci. 2013, 408, 25.

[32] Hong, N. N.; Song, L.; Wang, B. B.; Stec, A. A.; Hull, T. R.; Zhan, J.; Hu, Y. Mater. Res. Bull. 2014, 49, 657.

[33] Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Dong, S. J. ACS Nano 2010, 4, 2429.

[34] Liu, C. X.; Hou, W. G.; Li, Y.; Li, L. Chin. J. Chem. 2008, 26, 1806.

[35] Wu, Q. L.; Olafsen, A.; Vistad, B.; Roots, J.; Norby, P. J. Mater. Chem. 2005, 15, 4695.

[36] Wang, J.; Zhou, J. D.; Li, Z. S.; Song, Y. C.; Liu, Q.; Jiang, Z. H.; Zhang, M. L. Chem. Eur. J. 2010, 16, 14404.

[37] Rives, V. Inorg. Chem. 1999, 38, 406.

[38] Liu, C. X.; Hou, W. G.; Li, L. F.; Li, Y.; Liu, S. J. J. Solid State Chem. 2008, 181, 1792.

[39] Dong, L.; Li, Y.; Hou, W. G.; Liu, S. J. J. Solid State Chem. 2010, 183, 1811. Bhaskar, R.; Murthy, R.; Miglani, B.; Viswanathan, K. Int. J. Pharm. 1986, 28, 59.
Outlines

/