Article

Effect Analysis of Substituent Characteristics of PBDEs on Its Ah Receptor Binding Affinities

  • Jiang Long ,
  • Cheng Bingchuan ,
  • Li Yu
Expand
  • a. Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China;
    b. MOE Key Laboratory of Regional Energy Systems Optimization, North China Electric Power University, Beijing 102206, China

Received date: 2014-04-16

  Online published: 2014-05-27

Supported by

Project supported by the National Science & Technology Pillar Program in the Eleventh Five-Year Plan period (No.2008BAC43B01) and the Fundamental Research Funds for the Central Universities in 2013 (No.JB2013146).

Abstract

Based on the known experimental Ah receptor binding affinities of 18 kinds of polybrominated diphenyl ethers (PBDEs), the quantitative structure-activity relationships (QSAR) model for PBDEs' Ah receptor binding affinities was established via 13 substituent parameters (total number of substituent, substituent number in different position, substituent positional relationship parameters, substituent difference between two rings) to complement unknown binding affinities of other 191 PBDEs.Then, the full factorial experiment with 10 factors which correlated with each substituent position and 2 level (0,1) was applied to analyze the main effect and second-order interaction effect of each substituent position on PBDEs' Ah receptor binding affinities.Meanwhile, different analysis methods were used for the views of the total number of substituent, the similarity of different phenyl ring in single congener and the distribution of substituents on single phenyl ring to expound the correlation between substituent characteristics and Ah receptor binding affinities of PBDEs comprehensively.The obtained results have shown that: PBDEs' Ah receptor binding affinities are significantly affected by the main effect and second-order interaction effect of substitution positions, especially, the ortho-substituents can weaken the PBDEs' Ah receptor binding affinities and para-substituents have the opposite effect.The order of the importance for different position is presented as: para > ortho > meta. The main effect of meta-substituent is small which often affects the Ah receptor binding affinities of PBDEs by representing the second-order interaction effects combined with ortho/para-substituent.For other substituent characteristics, the total number of substituent and the similarity of different phenyl ring in single congener cannot control the Ah receptor binding affinities of PBDEs effectively, but the more decentralized for substituents on single phenyl ring, the smaller Ah receptor binding affinities for PBDEs.

Cite this article

Jiang Long , Cheng Bingchuan , Li Yu . Effect Analysis of Substituent Characteristics of PBDEs on Its Ah Receptor Binding Affinities[J]. Acta Chimica Sinica, 2014 , 72(6) : 743 -750 . DOI: 10.6023/A14040285

References

[1] Erickson, P.R.; Grandbois, M.; Arnold, W.A.; McNeill, K.Environ.Sci.Technol.2012, 46, 8174.
[2] Labunska, I.; Harrad, S.; Santillo, D.; Johnston, P.; Brigden, K.Environ.Sci.: Processes Impacts 2013, 15, 503.
[3] Cao, H.J.; He, M.X.; Han, D.D.; Sun, Y.H.; Xie, J.Atmos.Environ.2011, 45, 1525.
[4] Su, G.Y.; Yu, Y.J.; Liu, H.L.; Yu, H.X.Chinese J.Anal.Chem.2013, 41, 754.(苏冠勇, 余益君, 刘红玲, 于红霞, 分析化学, 2013, 41, 754.)
[5] Wang, Z.Y.; Zhai, Z.C.; Wang, L.S.; Chen, J.L.; Kikuchi, O.; Watanabe, T.J.Mol.Struct.: Theochem 2004, 672, 97.
[6] Na, S.; Kim, M.; Paek, O.; Kim, Y.Chemosphere 2013, 90, 1736.
[7] Wahl, M.; Lahni, B.; Guenther, R.; Kuch, B.; Yang, L.; Straehle, U.; Strack, S.; Weiss, C.Chemosphere 2008, 73(2), 209.
[8] Lilienthal, H.; Hack, A.; Roth-Harer, A.; Grande, S.W.; Talsness, C.E.Environ.Health Persp.2006, 114, 194.
[9] Gu, Y.Z.; Hogenesch, J.B.; Bradfield, C.A.Ann.Rev.Pharmacol.Toxicol.2000, 40, 519.
[10] Denison, M.S.; Pandini, A.; Nagy, S.R.; Baldwin, E.P.; Bonati, L.Chem.Biol.Interact.2002, 141, 3.
[11] Safe, S.H.Crit.Rex.Toxicol.1990, 21, 51.
[12] Kovarich, S.; Papa, E.; Gramatica, P.J.Hazard.Mater.2011, 190, 106.
[13] Chen, G.S.; Konstantinov, A.D.; Chittim, B.G.; Joyce, E.M.; Bols, N.C.; Bunce, N.J.Environ.Sci.Technol.2001, 35, 3749.
[14] Wang, Y.W.; Liu, H.X.; Zhao, C.Y.; Liu, H.X.; Cai, Z.W.; Jiang, G.B.Environ.Sci.Technol.2005, 39, 4961.
[15] Gu, C.G.; Ju, X.H.; Jiang, X.; Yu, K.; Yang, S.G.; Sun, C.Ecotox.Environ.Safe.2010, 73, 1470.
[16] Zheng, G.; Xiao, M.; Lu, X.H.QSAR Comb.Sci.2007, 26, 536.
[17] Xu, H.Y.; Zou, J.W.; Yu, Q.S.; Wang, Y.H.; Zhang, J.Y.; Jin, H.S.Chemosphere 2007, 66, 1998.
[18] Papa, E.; Kovarich, S.; Gramaticam, P.Chem.Res.Toxicol.2010, 23, 946.
[19] Gu, C.G.; Ju, X.H.; Jiang, X.; Wang, F.; Yang, S.G.; Sun, C.SAR QSAR Environ.Res.2009, 20, 287.
[20] Wang, Y.W.; Zhao, C.Y.; Ma, W.P.; Liu, H.X.; Wang, T.; Jiang, G.B.Chemosphere 2006, 64, 515.
[21] Gu, C.G.; Goodarzi, M.; Yang, X.L.; Bian, Y.R.; Cheng, S.; Xin, J.Toxicol.Lett.2012, 208, 269.
[22] Luthe, G.; Jacobus, J.A.; Robertson, L.W.Environ.Toxicol.Pharmacol.2008, 25, 202.
[23] Long, J.Y.; Yi, H.B.; Liu, X.K.; Wang, Y.F.Acta Chim.Sinica 2012, 70, 949.(龙杰义, 易海波, 刘星楷, 汪易飞, 化学学报, 2012, 70, 949.)
[24] Li, Y.; Wang, M.; Zhang, C.; Gao, Q.J.Jilin Univ.2013, 43, 1595.(李鱼, 王檬, 张琛, 高茜, 吉林大学学报, 2013, 43, 1595.)
[25] Cheng, Y.Y.; Chen, M.J.; Wu, Y.J.Acta Chim.Sinica 2002, 60, 2017.(程翼宇, 陈闽军, 吴永江, 化学学报, 2002, 60, 2017.)
[26] Li, Y.; Jiang, L.; Li, X.L.; Hu, Y.; Wen, J.Y.Chem.Res.Chin.Univ.2013, 29, 568.
[27] Gramatica, P.QSAR Comb.Sci.2007, 26, 694.
[28] OECD(Organisation for Economic Co-Operation and Development).Guideline document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models.ENV/JM/MONO(2007)2, 2007.
Outlines

/