Communication

Organocatalyzed Asymmetric Allylic Alkylation of MBH-Carbonates with Pyrazolones

  • Ma Shixiong ,
  • Zhong Yuan ,
  • Wang Shoulei ,
  • Xu Zhaoqing ,
  • Chang Min ,
  • Wang Rui
Expand
  • a School of Life Sciences, Lanzhou University, Lanzhou 730000;
    b Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000

Received date: 2014-04-24

  Online published: 2014-05-30

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21102141 and 21202072) and the Fundamental Research Funds for the Central Universities (Nos. 860976和861188).

Abstract

The asymmetric allylic alkylation (AAA) reaction is one of the important transformations in asymmetric synthesis, which was intensively studied in the last decade. Recently, the use of Morita-Baylis-Hillman (MBH) carbonates as electrophiles for the AAA reaction has attracted much attention. Pyrazole is an important pharmacophore, which often exhibit various biological and pharmacological activities. In the last years, the asymmetric synthesis using pyrazolones as the nucleophiles were reported by several research groups. However, the work were mainly focused on the asymmetric conjugate addition of pyrazoles to α,β-unsaturated compounds, and other types of enantioselective reactions were seldom studied. Herein, we report the first example of AAA reaction of MBH carbonates using pyrazolones as nucleophiles. In the reaction, we found that different Lewis basic catalyst, namely PPh3 and DABCO, shown different regioselectivity: PPh3 gave the γ-selective product whereas DABCO led to a complete β-selectivity. During the catalyst screening, cinchonine gave the best result. The enantioselectivity heavily relied on the choice of solvent: MeOH was superior compared to EtOH, CH2Cl2, DCE, acetone, CH3CN, toluene, m-xylene and PhCl. In the substrate scope study, all the reactions were proceeded smoothly under mild conditions by using cinchonine as the catalyst (20 mol%) and give the β-selective allylic alkylation products with good yields (55%~91%) and high enantioselectivities (up to 93% ee). Based on our experimental results and previous reports, a preliminary mechanism of bifunctional catalysis was proposed. A representative procedure for the asymmetric allylic alkylation of MBH-carbonates with pyrazolones is as follows: to a flask equipped with a magnetic stirring bar was charged with pyrazolone 1 (0.1 mmol) and MBH-carbonate 2 (0.12 mmol) in methanol (2 mL), and then, the cinchonine catalyst (6 mg, 20 mol%) was added under air. The reaction solution was stirred at room temperature for 72 to 96 hours. Then, the mixture was concentrated and purified through a flash chromatography (silica gel, PE/EtOAc, V:V=7:1) to give the corresponding products 3.

Cite this article

Ma Shixiong , Zhong Yuan , Wang Shoulei , Xu Zhaoqing , Chang Min , Wang Rui . Organocatalyzed Asymmetric Allylic Alkylation of MBH-Carbonates with Pyrazolones[J]. Acta Chimica Sinica, 2014 , 72(7) : 825 -829 . DOI: 10.6023/A14040319

References

[1] (a) Shi, M.; Wang, F.; Zhao, M.-X.; Wei, Y. The Chemistry of the Morita-Baylis-Hillman Reaction, RSC Catalysis Series, 2011.
(b) For a recent example, see: Yi, F.; Zhang, X.; Sun, H.; Chen, S. Acta Chim. Sinica 2012, 70, 741. (易封萍, 张旋, 孙海洋, 陈世洪, 化学学报, 2012, 70, 741.)
[2] For selected reviews, see: (a) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447.
(b) Singh, V.; Batra, S.;Tetrahedron 2008, 64, 4511.
[3] For selected reviews, see: (a) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560.
(b) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365.
(c) Du, Y.; Lu, X.; Zhang, C. Angew. Chem., Int. Ed. 2003, 42, 1035.
[4] Steenis, D. J.; Marcelli, T.; Lutz, M.; Spek, A. L.; Maarseveen, J. H.; Hiemstra, H. Adv. Synth. Catal. 2007, 349, 281.
[5] (a) Trost, B. M.; Tsui, H.-C.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 3534.
(b) Trost, B. M.; Maehaeek, M. R.; Tsui, H.-C. J. Am. Chem. Soc. 2005, 127, 7014.
(c) Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2002, 124, 11616.
(d) Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155.
[6] (a) Du, Y.; Han, X.; Lu, X. Tetrahedron Lett. 2004, 45, 4967.
(b) Peng, J.; Huang, X.; Jiang, L.; Cui, H.-L.; Chen, Y.-C. Org. Lett. 2011, 13, 4584.
(c) Sun, X.; Peng, J.; Zhang, S.; Zhou, Q.; Dong, L.; Chen, Y.-C. Acta Chim. Sinica 2012, 70, 1682. (孙峋皓, 彭景, 张叔阳, 周清清, 董琳, 陈应春, 化学学报, 2012, 70, 1682.)
[7] Huang, F. C. US 4668694 [Chem. Abstr. 1987, 107, 59027].
[8] (a) Brogden, R. N. Drug. 1986, 32, 60.
(b) Costa, D.; Marques, A. P.; Reis, R. L.; Lima, J. L. F. C.; Fernandes, E. Free Radical Biol. Med. 2006, 40, 632.
[9] Sujatha, K.; Shanthi, G.; Selvam, N. P.; Manoharan, S.; Perumal, P. T.; Rajendran, M. Bioorg. Med. Chem. Lett. 2009, 19, 4501.
[10] (a) Casas, J. S.; Castellano, E. E.; Ellena, J.; Garcia-Tasende, M.; Perez-Paralles, M. L.; Sanchez, A.; Sanchez-Gonzalez, A.; Sordo, J.; Touceda, A. J. Inorg. Biochem. 2008, 102, 33.
(b) Park, H. J.; Lee, K.; Park, S. J.; Ahn, B.; Lee, J. C.; Cho, H.; Lee, K. I. Bioorg. Med. Chem. Lett. 2005, 15, 3307.
(c) Tripathy, R.; Reiboldt, A.; Messina, P. A.; Iqbal, M.; Singh, J.; Bacon, E. R.; Angeles, T. S.; Yang, S. X.; Albmo, M.; Robinson, C.; Chang, H.; Ruggeri, B. A.; Mallamo, J. P. Bioorg. Med. Chem. Lett. 2006, 16, 2158.
[11] (a) Bondock, S.; Rabie, R.; Etman, H. A.; Fadda, A. A. Eur. J. Med. Chem. 2008, 43, 2122.
(b) Abdel-Aziz, M.; Abuo-Rahma, G. E. A.; Hassan, A. A. Eur. J. Med. Chem. 2009, 44, 3480.
[12] Gogoi, S.; Zhao, C.-G. Tetrahedron Lett. 2009, 50, 2252.
[13] Gogoi, S.; Zhao, C.-G.; Ding, D. Org. Lett. 2009, 11, 2249.
[14] Liao, Y.-H.; Chen, W.-B.; Wu, Z.-J.; Du, X.-L.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Adv. Synth. Catal. 2010, 352, 827.
[15] Alba, A. N.; Zea, A.; Valero, G.; Calbet, T.; Font-Bardia, M.; Mazzanti, A.; Moyano, A.; Rios, R. Eur. J. Org. Chem. 2011, 1318.
[16] Mazzanti, A.; Calbet, T.; Font-Bardia, M.; Moyano, A.; Rios, R. Org. Biomol. Chem. 2012, 10, 1645.
[17] Yang, Z. G.; Wang, Z.; Bai, S.; Liu, X. H.; Lin, L. L.; Feng, X. M. Org. Lett. 2011, 13, 596.
[18] Wang, Z.; Yang, Z. G.; Chen, D. H.; Liu, X. H.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2011, 50, 4928.
[19] Wang, Z.; Chen, Z. L.; Bai, S.; Li, W.; Liu, X. H.; Lin, L. L.; Feng, X. M. Angew. Chem., Int. Ed. 2012, 51, 2776.
[20] For selected reviews on the MBH reactions, see: (a) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447.
(b) Langer, P. Angew. Chem., Int. Ed. 2000, 39, 3049.
(c) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811.
(d) Masson, G.; Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614.
(e) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581.
(f) Shi, Y.-L.; Shi, M. Eur. J. Org. Chem. 2007, 2905.
(g) Ma, G.-N.; Jiang, J.-J.; Shi, M.; Wei, Y. Chem. Commun. 2009, 5496.
(h) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109. For recent reviews on the utilization of MBH adducts, see:
(i) Rios, R. Catal. Sci. Technol. 2012, 2, 267.
(j) Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101.
[21] Wang, S.-L. Master Thesis, Lanzhou University, Lanzhou, 2013. (王守磊, 硕士论文, 兰州大学, 兰州, 2013.)
[22] (a) Sun, W.; Hong, L.; Liu, C.; Wang, R. Org. Lett. 2010, 12, 3914.
(b) Zhong, F.; Luo, J.; Chen, G.-Y.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2012, 134, 10222.
[23]The alkene geometry in the product was determined by NOESY experiment (see supporting information for details). The absolute configurations of the products were not assigned.
Outlines

/