Review

Magical Chiral Spiro Ligands

  • Xie Jianhua ,
  • Zhou Qilin
Expand
  • State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071

Received date: 2014-05-08

  Online published: 2014-06-05

Supported by

Project supported by the the National Natural Science Foundation of China, the National Basic Research Program of China (973 Program, No. 2012CB821600), and“111” Project of the Ministry of Education of China (Grant No. B06005).

Abstract

Transition metal catalyzed asymmetric reaction is a hot issue and a frontier of the research in current organic chemistry. The design and synthesis of new type of efficient chiral ligands and chiral catalysts, esspecially those with novel skeleton is the focus of research in asymmetric catalysis. Since 1990's, chiral ligands based on spiro skeletons have received increasing attention and gradually developed into a new type of chiral ligands with distinctive characteristics. The skeletons of the chiral spiro ligands developed from spiro[4.4]nonane with three chiral stereocenters to spirobiindane and spiro[4.4]nonadiene with only one axial chirality, as well as other types of spiro skeletons. Nowadays, the library of chiral spiro ligands contains a wide range of chiral spiro ligands with different skeletons, including chiral spiro monophosphorus ligands, diphosphine ligands, phosphine-nitrogen ligands, dinitrogen ligands, and etc. Many of these chiral spiro ligands and related catalysts not only have shown high catalytic activity and high enantioselectivity for various asymmetric reactions such as asymmetric hydrogenations, asymmetric carbon-carbon bond forming reactions, and asymmetric carbon-heteroatom bond forming reactions, but also have made the enantiocontrol of many catalytic asymmetric reactions, which are difficult in obtaining high enantioselectivities, more easily and possible. The chiral spiro skeleton has become a ‘privileged structure’, and chiral spiro ligands and catalysts have been used in the syntheses of different type of chiral compounds including chiral natural products and chiral drugs. The emergence of chiral spiro ligands increased the dynamism of research on finding new chiral ligands and catalysts, and promoted asymmetric synthesis chemistry. Henceforth, the focus of study in chiral spiro ligands will continue to be the development of new chiral spiro ligands and catalysts with high activity and high enantioselectivity. At the same time, the applications of chiral spiro ligands in the new catalytic asymmetric reactions, and in the asymmetric synthesis of bioactive chiral compounds, chiral natural products and chiral drugs will become a new focus of research.

Cite this article

Xie Jianhua , Zhou Qilin . Magical Chiral Spiro Ligands[J]. Acta Chimica Sinica, 2014 , 72(7) : 778 -797 . DOI: 10.6023/A14050364

References

[1] (a) Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C. Priciples and Applications of Asymmetric Synthesis, Wiley, New York, 2001.
(b) Ed.: Ojima, I., Catalytic Asymmetric Synthesis, Wiley-VCH, New York, 2000.
(c) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427 (谢建华, 周其林, 化学学报, 2012, 70, 1427).
(d) Liu, Y.; Wang, Z.; Ding, K.-L. Acta Chim. Sinica 2012, 70, 1446 (刘龑, 王正, 丁奎岭, 化学学报, 2012, 70, 1446).
(e) Zheng, K.; Lin, L.-L.; Feng, X.-M. Acta Chim. Sinica 2012, 70, 1758 (郑柯, 林丽丽, 冯小明, 化学学报, 2012, 70, 1758).
[2] (a) Knowles, W. S.; Sabacky, M. J. J. Chem. Soc., Chem. Commun. 1968, 1445.
(b) Horner, L.; Siegel, H.; Büthe, H. Angew. Chem., Int. Ed. 1968, 7, 942.
[3] (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(b) Ed.: Zhou, Q.-L., Privileged Chiral Ligands and Catalysts, Wiley-VCH Verlag GmbH & Co. KgaA, 2011.
[4] Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D. J. Chem. Soc., Chem. Commun. 1972, 10.
[5] (a) Dang, T. P.; Kagan, H. G. J. Chem. Soc., Chem. Commun. 1972, 481.
(b) Dang, T. P.; Kagan, H. G. J. Am. Chem. Soc. 1972, 94, 6429.
[6] Knowles. W. S. Acc. Chem. Res. 1983, 16, 106.
[7] Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.
[8] Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008.
[9] (a) Zhu, S. F.; Zhou, Q.-L. In Privileged Chiral Ligands and Catalysts, Ed.: Zhou, Q.-L., Wiley-VCH Verlag GmbH & Co. KgaA, 2011, pp. 137~170.
(b) Zhou, Q.-L.; Xie, J.-H. Top. Organomet. Chem. 2011, 36, 1.
(c) Ding, K.; Han, Z.; Wang, Z. Chem.-Asian J. 2009, 4, 32.
(d) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581.
(e) Zhang, Z.-H. Chin. J. Org. Chem. 2005, 25, 355. (张占辉, 有机化学, 2005, 25, 355.)
[10] Srivastava, N.; Mital, A.; Kumar, A. Chem. Commun. 1992, 493.
[11] Chan, A. S. C.; Hu, W.-H.; Pai, C.-C.; Lau, C.-P.; Jiang, Y.-Z.; Mi, A.-Q.; Yan, M.; Sun, J.; Lou, R.-L.; Deng, J.-G. J. Am. Chem. Soc. 1997, 119, 9570.
[12] (a) Arai, M. A.; Arai, T.; Sasai, H. Org. Lett. 1999, 1, 1795.
(b) Arai, M. A.; Kuraishi, M.; Arai, T.; Sasai, H. J. Am. Chem. Soc. 2001, 123, 2907.
[13] Birman, V. B.; Rheingold, A. L.; Lam, K.-C. Tetrahedron: Asymmetry 1999, 1, 1975.
[14] (a) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348.
(b) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem. Commun. 2002, 480.
[15] Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2003, 125, 4404.
[16] Zhu, G.; Cao, P.; Jiang, Q.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 1799.
[17] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2009, 48, 5345.
[18] (a) Jiang, Y.; Xue, S.; Li, Z.; Deng, J.; Mi, A.; Chan, A. S. C. Tetrahedron: Asymmetry 1998, 9, 3185.
(b) Jiang, Y.; Xue, S.; Yu, K.; Li, Z.; Deng, J.; Mi, A.; Chan, A. S. C. J. Organomet. Chem. 1999, 586, 159.
[19] Lin, C.-W.; Lin, C.-C.; Lam, L. F.-L.; Au-Yeung, T. T.-L.; Chan, A. S. C. Tetrahedron Lett. 2004, 45, 7379.
[20] Guo, Z.-Q.; Guan, X.-Y.; Chen, Z.-Y. Tetrahedron: Asymmetry 2006, 17, 468.
[21] Takizawa, S.; Honda, Y.; Arai, M. A.; Kato, T.; Sasai, H. Heterocycles 2003, 60, 2551.
[22] Kato, T.; Marubayashi, K.; Takizawa, S.; Sasai, H. Tetrahedron: Asymmetry 2004, 15, 3693.
[23] Bajracharya, G. B.; Arai, M. A.; Koranne, P. S.; Suzuki, T.; Takizawa, S.; Sasai, H. Bull. Chem. Soc. Jpn. 2009, 82, 285.
[24] Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Am. Chem. Soc. 2009, 131, 3452.
[25] Lait, S. M.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry 2004, 15, 155.
[26] Benoit, W. L.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry 2009, 20, 69.
[27] (a) Zhu, S.-F.; Xie, J.-H.; Liu, B.; Xing, L.; Zhou, Q.-L. Tetrahedron: Asymmetry 2003, 14, 3219.
(b) Fu, Y.; Hou, G.-H.; Xie, J.-H.; Xing, L.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2004, 69, 8157.
(c) Fu, Y.; Guo, X.-X.; Zhu, S.-F.; Hu, A.-G.; Xie, J.-H.; Zhou, Q.-L. J. Org. Chem. 2004, 69, 4648.
[28] (a) Hou, G.-H.; Xie, J.-H.; Yan, P.-C.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 1366.
(b) Yan, P.-C.; Xie, J.-H.; Hou, G.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2009, 351, 3176.
[29] Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou, G.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 2780.
[30] (a) Yang, Y.; Zhu, S.-F.; Duan, H.-F.; Zhou, C.-Y.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 2248.
(b) Yang, Y.; Zhu, S.-F.; Zhou, C.-Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 14052.
[31] Mai, D. N.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 12157.
[32] (a) Hopkins, B. A.; Wolfe, J. P. Angew. Chem., Int. Ed. 2012, 51, 9886.
(b) Babij, N. R.; Wolfe, J. P. Angew. Chem., Int. Ed. 2013, 52, 9247.
(c) Babij, N. R.; Rosen, B. R.; Wolfe, J. P. Org. Lett. 2011, 13, 2932.
[33] González, A. Z.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 5500.
[34] Suárez-Pantiga, S.; Hernández-Díaz, C.; Rubio, E.; González, J. M. Angew. Chem., Int. Ed. 2012, 51, 11552.
[35] Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16330.
[36] Shi, W.-J.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Zhou, Q.-L. Tetrahedron: Asymmetry 2003, 14, 3867.
[37] (a) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.; Zhou, Q.-L. Org. Lett. 2006, 8, 1479.
(b) Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567.
(c) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 4351.
[38] Zhu, S.-F.; Qiao, X.-C.; Zhang, Y.-Z.; Wang, L.-X.; Zhou, Q.-L. Chem. Sci. 2011, 2, 1135.
[39] Hou, G.-H.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 11774.
[40] Zhu, S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7, 2333.
[41] Zhang, W.; Zhu, S.-F.; Qiao, X.-C.; Zhou, Q.-L. Chem.-Asian J. 2008, 3,2105.
[42] Zhou, C.-Y.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 10955.
[43] Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2225.
[44] Lundgren, R. J.; Wilsily, A.; Marion, N.; Ma, C.; Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2013, 52, 2525.
[45] Xie, J.-H.; Duan, H.-F.; Fan, B.-M.; Cheng, X.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2006, 346, 625.
[46] Fan, B.-M.; Xie, J.-H.; Li, S.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 1275.
[47] (a) Zhou, Z.-T.; Xie, J.-H.; Zhou, Q.-L. Adv. Synth. Catal. 2009, 351, 363.
(b) Xie, J.-H.; Zhou, Z.-T.; Kong, W.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 1868.
[48] (a) Xie, J.-H.; Liu, S.; Huo, X.-H.; Cheng, X.; Duan, H.-F.; Fan, B.-M.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 2967.
(b) Liu, S.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 7506.
(c) Liu, S.; Xie, J.-H.; Li, W.; Kong, W.-L.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2009, 11, 4994.
(d) Xie, J.-H.; Liu, S.; Kong, W.-L.; Bai, W.-J.; Wang, X.-C.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2009, 131, 4222.
(e) Bai, W.-J.; Xie, J.-H.; Li, Y.-L.; Liu, S.; Zhou, Q.-L. Adv. Synth. Catal. 2010, 352, 81. (f) Cheng, L.-J.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2012, 354, 1105. (g) Chen, J.-Q.; Xie, J.-H.; Bao, D.-H.; Liu, S.; Zhou, Q.-L. Org. Lett. 2012, 14, 2714. (h) Cheng, L.-J.; Xie, J.-H.; Chen, Y.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2013, 15, 764. (i) Li, G.; Xie, J.-H.; Hou, J.; Zhu, S.-F.; Zhou, Q.-L. Adv. Synth. Catal. 2013, 355, 1597. (j) Liu, C.; Xie, J.-H.; Li, Y.-L.; Chen, J.-Q.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 593.
[49] (a) Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2005, 44, 1118.
(b) Cheng, X.; Xie, J.-H.; Li, S.; Zhou, Q.-L. Adv. Synth. Catal. 2006, 348, 1271.
[50] Tang, W.-J.; Zhu, S.-F.; Xu, L.-J.; Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K.; Chan, A. S. C. Chem. Commun. 2007, 613.
[51] (a) Schnider, P.; Koch, G.; Pretot, R.; Wang, G.; Bohnen, M.; Kruger, C.; Pfaltz, A. Chem. Eur. J. 1997, 3, 887.
(b) Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37, 2897.
(c) Kainz, S.; Brinkmann, A.; Leitner, W.; Pflatz, A. J. Am. Chem. Soc. 1999, 121, 6421.
[52] Zhu, S.-F.; Xie, J.-B.; Zhang, Y.-Z.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 12886.
[53] (a) Li, S.; Zhu, S.-F.; Zhang, C.-M.; Song, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2008, 130, 8584.
(b) Li, S.; Zhu, S.-F.; Xie, J.-H.; Song, S.; Zhang, C.-M.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 1172.
(c) Song, S.; Zhu, S.-F.; Pu, L.-Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 6072.
[54] (a) Song, S.; Zhu, S.-F.; Yang, S.; Li, S.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2012, 51, 2708.
(b) Song, S.; Zhu, S.-F.; Yu, Y.-B.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 1556.
[55] (a) Xie, J.-B.; Xie, J.-H.; Liu, X.-Y.; Kong, W.-L.; Li, S.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 4538.
(b) Xie, J.-B.; Xie, J.-H.; Liu, X.-Y.; Zhang, Q.-Q.; Zhou, Q.-L. Chem.-Asian J. 2011, 6, 899.
(c) Zhu, S.-F.; Yu, Y.-B.; Li, S.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2012, 51, 8872.
[56] (a) Xie, J.-H.; Liu, X.-Y.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 7329.
(b) Xie, J.-H.; Liu, X.-Y.; Yang, X.-H.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2012, 51, 201.
(c) Yang, X.-H.; Xie, J.-H.; Zhou, Q.-L. Org. Chem. Front. 2014, 1, 190.
[57] Yan, P.-C.; Zhu, G.-L.; Xie, J.-H.; Zhang, X.-D.; Zhou, Q.-L.; Li, Y.-Q.; Shen, W.-H.; Che, D.-Q. Org. Process Res. Dev. 2013, 17, 307.
[58] Yang, X.-H.; Xie, J.-H.; Liu, W.-P.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 7833.
[59] Arai, N.; Ohkuma, T. Chem. Rec. 2012, 12, 284.
[60] Liu, B.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Tetrahedron: Asymmetry 2006, 17, 634.
[61] Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
[62] (a) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 5834.
(b) Zhu, S.-F.; Xu, B.; Wang, G.-P.; Zhou, Q.-L. J. Am. Chem. Soc. 2012, 134, 436.
[63] Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010, 2, 546.
[64] Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 2978.
[65] Su, W.; Ma, S. Chem. Commun. 2009, 6198.
[66] Shu, W.; Yu, Q.; Ma, S. Adv. Synth. Catal. 2009, 351, 2807.
[67] Zhang, Y.-Z.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 8496.
[68] Hoffman, T. J.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 10670.
[69] (a) Zhang, Y.; Han, Z.; Li, F.; Ding, K.; Zhang, A. Chem. Commun. 2010, 46, 156.
(b) Shang, J.; Han, Z.; Li, Y.; Wang, Z.; Ding, K. Chem. Commun. 2012, 48, 5172.
(c) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 936.
[70] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Chin. Sci. Bull. 2010, 55, 2840.
[71] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Scientia Sinica Chimica 2010, 40, 950. (韩召斌, 王正, 张绪穆, 丁奎岭, 中国科学?化学, 2010, 40, 950.)
[72] Shimizu, H.; Igarashi, D.; Kuriyama, W.; Yusa, Y.; Sayo, N.; Saito, T. Org. Lett. 2007, 9, 1655.
[73] Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Tetrahedron: Asymmetry 2010, 21, 1529.
[74] (a) Freixa, Z.; Beentjes, M. S.; Batema, G. D.; Dieleman, C. B.; van Strijdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Fraanje, J.; Goubitz, K.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2003, 42, 1284.
(b) Freixa, Z.; Kamer, P. C. J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2005, 44, 4384.
[75] Jacquet, O.; Clément, N. D.; Blanco, C.; Belmonte, M. M.; Benet-Buchholz, J.; van Leeuwen, P. W. M. N. Eur. J. Org. Chem. 2012, 4844.
[76] (a) Wang, X.; Meng, F.; Wang, Y.; Han, Z.; Chen, Y.-J.; Liu, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 9276.
(b) Wang, X.; Guo, P.; Wang, X.; Wang, Z.; Ding, K. Adv. Synth. Catal. 2013, 355, 2900.
[77] Wang, X.; Guo, P.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2014, 136, 405.
[78] Cao, Z.-Y.; Wang, X.; Tan, C.; Zhao, X.-L.; Zhou, J.; Ding, K. J. Am. Chem. Soc. 2013, 135, 8197.
[79] Sala, X.; Suárez, E. J. G.; Freixa, Z.; Benet-Buchholz, J.; van Leeuwen, P. W. N. M. Eur. J. Org. Chem. 2008, 6197.
[80] Jacquet, O.; Clément, N. D.; Freixa, Z.; Ruiz, A.; Claver, C.; van Leeuwen, P. W. N. M. Tetrahedron: Asymmetry 2011, 22, 1490.
[81] Li, J.; Chen, G.; Wang, Z.; Zhang, R.; Zhang, X.; Ding, K. Chem. Sci. 2011, 2, 1141.
[82] Li, J.; Pan, W.; Wang, Z.; Zhang, X.; Ding, K. Adv. Synth. Catal. 2012, 354, 1980.
[83] Wu, S.-L.; Zhang, W.-C.; Zhang, Z.-G.; Zhang, X.-M. Org. Lett. 2004, 6, 3565.
[84] Zhang, W.; Wang, C.-J.; Gao, W.; Zhang, X. Tetrahedron Lett. 2005, 46, 6087.
[85] Hou, X.-H.; Xie, J.-H.; Wang, Q.-S.; Zhou, Q.-L. Adv. Synth. Catal. 2007, 349, 2477.
[86] Khlebnikov, A. F.; Kozhushkov, S. I.; Yufit, D. S.; Schill, H.; Reggelin, M.; Spohr, V.; de Meijere, A. Eur. J. Org. Chem. 2012, 1530.
[87] Shibatomi, K.; Muto, T.; Sumikawa, Y.; Narayama, A.; Iwasa, S. Synlett 2009, 241.
[88] (a) Shibatomi, K.; Narayama, A.; Soga, Y.; Muto, T.; Iwasa, S. Org. Lett. 2011, 13, 2944.
(b) Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836.
(c) Narayama, A.; Shibatomi, K.; Soga, Y.; Muto, T.; Iwasa, S. Synlett 2013, 375.
Outlines

/