Communication

Application of Chiral Anion Metathesis Strategy in Asymmetric Transfer Hydrogenation of Isoquinolines

  • Shi LeiJi ,
  • Yue Huang ,
  • Wen xue ,
  • Zhou Yonggui
Expand
  • a Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

Received date: 2014-05-19

  Online published: 2014-06-17

Supported by

Project supported by the National Natural Science Foundation of China (No. 21202162) and the State Key Laboratory of Fine Chemicals (No. KF1110).

Abstract

Asymmetric hydrogenation of N-hetero aromatics offers a very straightforward and efficient method to obtain the corresponding chiral N-hetero cyclic saturated or partially saturated compounds. As one of the most challenging substrates, asymmetric hydrogenation of isoquinolines has met with limited success probably because of lower reactivity and the catalyst deactivation resulted from strong coordination. Considering the prevalence of the chiral 1,2,3,4-tetrahydroisoquinoline motif in natural alkaloids and drug molecules, the development of new catalyst system for asymmetric hydrogenation of isoquinolines is highly desirable and significant. Herein, a novel chiral anion metathesis strategy successfully applied for asymmetric transfer hydrogenation of isoquinolines is reported. N-Protected 1-substituted 1,2-dihydroisoquinolines were obtained with high yield and up to 79% ee in the presence of Hantzsch ester and chloroformate using chiral phosphoric acid as catalyst. The phosphate salt and the activated N-acyl isoquinolinium chloride undergo anion metathesis to form chiral contact ion pair, which leads to a highly enantioselective transfer hydrogenation of isoquinolines. After systematically investigating the effects of activating reagent, solvent, base, hydride donor and catalyst on this transfer hydrogenation reaction, the best result was achieved under the optimized condition as follows: 5 mol% H8-BINOL-derived chiral phosphoric acid as catalyst, 1.2 equivalent 2,2,2-trichloroethyl chloroformate as activator, 1.5 equivalent dimethyl 2,6-diethyl-1,4-dihydropyridine-3,5- dicarboxylate as hydride donor, 1.5 equivalent sodium carbonate as base and cyclohexane as solvent. The reaction is tolerant toward a broad range of aryl or alkyl 1-substituted isoquinoline substrates. This methodology represents one of the rare examples of asymmetric hydrogenation of this challenging substrate. The utilizing of chiral anion metathesis strategy could enable chiral phosphoric acid to catalyze more asymmetric transformation process and further researching is ongoing in our laboratory.

Cite this article

Shi LeiJi , Yue Huang , Wen xue , Zhou Yonggui . Application of Chiral Anion Metathesis Strategy in Asymmetric Transfer Hydrogenation of Isoquinolines[J]. Acta Chimica Sinica, 2014 , 72(7) : 820 -824 . DOI: 10.6023/A14050391

References

[1] Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

[2] Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.

[3] Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem. Int. Ed. 2006,

[4] Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2006, 45, 4796.

[5] Rueping, M.; Azap, C. Angew. Chem. Int. Ed. 2006, 45, 7832.

[6] Liu, H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org. Lett. 2006, 8, 6023.

[7] Lv, J.; Zhong, X.-R.; Cheng, J.-P.; Luo, S.-Z. Acta Chim. Sinica 2012, 70, 1518. (吕健, 钟兴仁, 程津培, 罗三中, 化学学报, 2012, 70, 1518.)

[8] Huang, J.-Z.; Luo, S.-W.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 879. (黄建洲, 罗时玮, 龚流柱, 化学学报, 2013, 71, 879.)

[9] Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.

[10] Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem. Int. Ed. 2005, 44, 7424.

[11] Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 6751.

[12] Li, G.-L.; Liang, Y.-X.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 5830.

[13] Rueping, M.; Sugiono, E.; Schoepke, F.-R. Synlett 2010, 852.

[14] Kang, Q.; Zhao, Z.-A.; You, S.-L. Org. Lett. 2008, 10, 2031.

[15] Wang, D.; Hou, C.-J.; Chen, L.-F.; Liu, X.-N.; An, Q.-D.; Hu, X.-P. Chin. J. Org. Chem. 2013, 33, 1355. (王东, 侯传金, 陈丽凤, 刘小宁, 安庆大, 胡向平, 有机化学, 2013, 33, 1355.)

[16] Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2007, 46, 5565.

[17] Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. 2007, 129, 1484.

[18] Sheng, Y.-F.; Zhang, A.-J.; Zheng, X.-J.; You, S.-L. Chin. J. Org. Chem. 2008, 28, 605. (盛益飞, 张安将, 郑晓建, 游书力, 有机化学, 2008, 28, 605.)

[19] Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 292.

[20] He, Z.-R.; Huang, Y.-Y.; Verpoort, F. Acta Chim. Sinica 2013, 71, 700. (何展荣, 黄毅勇, Verpoort Francis, 化学学报, 2013, 71, 700.)

[21] Xu, S.; Wang, Z.; Zhang, X.; Zhang, X.; Ding, K. Angew. Chem. Int. Ed. 2008, 47, 2840.

[22] Su, Y.-J.; Shi, F.-Q. Chin. J. Org. Chem. 2010, 30, 486. (苏亚军, 史福强, 有机化学, 2010, 30, 486.)

[23] Wu, X.; Li, M.-L.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 1091. (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)

[24] Lv, J.; Luo, S.-Z. Chem. Commun. 2013, 49, 847.

[25] Xu, B.; Zhu, S.-F.; Zhang, Z.-C.; Yu, Z.-X.; Ma, Y.; Zhou, Q.-L. Chem. Sci. 2014, 5, 1442.

[26] Qiu, H.; Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nature Chemistry 2012, 4, 733.

[27] Qiu, H.; Zhang, D.; Liu, S.-Y.; Qiu, L.; Zhou, J.; Qian, Y.; Zhai, C.-W.; Hu, W.-H. Acta Chim. Sinica 2012, 70, 2484. (邱晃, 张丹, 刘顺英, 邱林, 周俊, 钱宇, 翟昌伟, 胡文浩, 化学学报, 2012, 70, 2484.)

[28] Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518.

[29] Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.

[30] Wang, Y.-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste, F. D. J. Am. Chem. Soc. 2012, 134, 12928.

[31] Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 1268.

[32] Lackner, A. D.; Samant, A. V.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14090.

[33] Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.

[34] Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem. Int. Ed. 2006, 45, 3683.

[35] Glorius, F. Org. Biomol. Chem. 2005, 3, 4171.

[36] Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Chin. J. Org. Chem. 2005, 25, 634. (卢胜梅, 韩秀文, 周永贵, 有机化学, 2005, 25, 634.)

[37] Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357.

[38] Kuwano, R. Heterocycles 2008, 76, 909.

[39] Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.

[40] Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427. (谢建华, 周其林, 化学学报, 2012, 70, 1427.)

[41] He, Y.-M.; Song, F.-T.; Fan, Q.-H. Top. Curr. Chem. 2014, 343, 145.

[42] Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.

[43] Zhou, H.-F.; Li, Z.-W.; Wang, Z.-J.; Wang, T.-L.; Xu, L.-J.; He, Y.-M.; Fan, Q.-H.; Pan, J.; Gu, L.-Q.; Chan, A. S. C. Angew. Chem. Int. Ed. 2008, 47, 8464.

[44] Wang, T.-L.; Zhuo, L.-G.; Li, Z.-W.; Chen, F.; Ding, Z.-Y.; He, Y.-M.; Fan, Q.-H.; Xiang, J.-F.; Yu, Z.-X.; Chan, A. S. C. J. Am. Chem. Soc. 2011, 133, 9878.

[45] Lei, A.; Chen, M.; He, M.; Zhang, X. Eur. J. Org. Chem. 2006, 4343.

[46] Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 7614.

[47] Guo, Q.-S.; Du, D. M.; Xu, J.-X. Angew. Chem. Int. Ed. 2008, 47, 759.

[48] Rueping, M.; Tato, F.; Schoepke, F. R. Chem. Eur. J. 2010, 16, 2688.

[49] Rueping, M.; Antonchick, A. P. Angew. Chem. Int. Ed. 2007, 46, 4562.

[50] Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2006, 45, 2260.

[51] Shi, L.; Ye, Z.-S.; Cao, L.-L.; Guo, R.-N.; Hu, Y.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2012, 51, 8286.

[52] Ye, Z.-S.; Guo, R.-N.; Cai, X.-F.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2013, 52, 3685.

[53] Iimuro, A.; Yamaji, K.; Kandula, S.; Nagano, T.; Kita, Y.; Mashima, K. Angew. Chem. Int. Ed. 2013, 52, 2046.

[54] Guo, R.-N.; Cai, X.-F.; Shi, L.; Ye, Z.-S.; Chen, M.-W.; Zhou, Y.-G. Chem. Commun. 2013, 49, 8537.
Outlines

/