Article

Superhydrophobic and Highly Oleophobic Nylon Surface

  • Hao Wei ,
  • Shao Zhengzhong
Expand
  • State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory and Department of Macromolecular Science, Fudan University, Shanghai 200433

Received date: 2014-07-05

  Online published: 2014-08-27

Supported by

Project supported by the National Natural Science Foundation of China (No. 21034003) and Program of Shanghai Subject Chief Scientist (No. 12XD1401000).

Abstract

Superhydrophobic and superoleophobic surfaces are desirable for many practical applications. Creating a rough structure on polymer surface then modified by materials with low surface free energy can broaden the potential applications of polymers. In this research, we used three different methods to modify nylon 6 surface, then compared their effect on preparing nylon 6 surface roughness. Activation of amides by chemical reduction with borane-THF complex resulted in secondary amine groups, which could absorb silica spheres with different sizes driven by electrostatic attraction. On the other side, alkylation with (3-glycidoxypropyl) triethoxysilane (GPTES) was utilized to introduce silica-like reactivity to the surface, while plasma-treatment could import hydroxyl groups on nylon 6 surface. Then silica layer was generated and covalently bonded to the nylon 6 in situ. After treated with 3-aminopropyl-triethoxysiloxane (APS), silica spheres could be introduced to the sample more evenly than the first method, and then reacted with silicon tetrachloride to enhance mechanical robustness. Plasma-treatment was more fast and clean in preparing the stable roughness, which made this modification a favorable method. Different size silica spheres were used to construct roughness on nylon textile. After being modified with a perfluoroalkyl silane, the surface with all roughness had superhydrophobic property, while the wettability of low-energy liquid on the surface was depending on the micro structure size. Silica spheres with size between 500 nm and 900 nm were propitious to achieve stable Cassie state, which could cause high contact angles (about 140°) and low roll-off angles (about 20°) for 3 μL hexadecane droplets. On the other hand, for the samples adsorbed silica spheres with size between 20 nm and 200 nm, the contact angles and roll-off angles for 3 μL hexadecane were about 125° and 40°, respectively. Because of the air trapped between the roughnesses, the obtained superhydrophobic and highly oleophobic nylon textile also show high resistance to bacterial contamination. This may broaden the application of nylon.

Cite this article

Hao Wei , Shao Zhengzhong . Superhydrophobic and Highly Oleophobic Nylon Surface[J]. Acta Chimica Sinica, 2014 , 72(9) : 1023 -1028 . DOI: 10.6023/A14070510

References

[1] Yao, X.; Song, Y. L.; Jiang, L. Adv. Mater. 2011, 23, 719.
[2] Chen, P. P.; Chen, L.; Han, D.; Zhai, J.; Zheng, Y. M.; Jiang, L. Small 2009, 5, 908.
[3] Chen, Y.; Xu, J. S.; Guo, Z. G. Prog. Chem. 2012, 24, 696. (陈钰, 徐建生, 郭志光, 化学进展, 2012, 24, 696.)
[4] Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.
[5] Cassie, A.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546.
[6] Liu, S. S.; Zhang, Z. H.; He, J. G.; Zhou, J.; Yin, H. Y. Acta Phys. Sin. 2013, 62, 206201. (刘思思, 张朝辉, 何建国, 周杰, 尹恒洋,物理学报, 2013, 62, 206201.)
[7] Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. J. Mater. Chem. 2008, 18, 621.
[8] Xie, L. Y.; Hong, F.; Liu, J. H.; Zhang, G. Z.; Wu, Q. Acta Polym. Sin. 2012, (1), 1. (解来勇, 洪飞, 刘剑洪, 张广照, 吴奇, 高分子学报, 2012, (1), 1.)
[9] Liang, W. X.; Wang, G. Y.; Wang, B.; Zhang, Y. B.; Guo, Z. G. Acta Chim. Sinica 2013, 71, 639. (梁伟欣, 王贵元, 王奔, 张亚斌, 郭志光, 化学学报, 2013, 71, 639.)
[10] Gao, Q.; Xu, Y.; Wu, D.; Sun, Y. H. Acta Chim. Sinica 2009, 67, 1754. (高强, 徐耀, 吴东, 孙予罕, 化学学报, 2009, 67, 1754.)
[11] Shi, F.; Niu, J.; Liu, J.; Liu, F.; Wang, Z.; Feng, X. Q.; Zhang, X. Adv. Mater. 2007, 19, 2257.
[12] Dong, H.; Cheng, M.; Zhang, Y.; Wei, H.; Shi, F. J. Mater. Chem. A 2013, 1, 5886.
[13] Liang, W. X.; Zhang, Y. B.; Wang, B.; Guo, Z. G.; Liu, W. M. Acta Chim. Sinica 2012, 70, 2393. (梁伟欣, 张亚斌, 王奔, 郭志光, 刘维民, 化学学报, 2012, 70, 2393.)
[14] Zhang, X. X.; Wang, L.; Levanen, E. RSC Adv. 2013, 3, 12003.
[15] Ji, J. H.; Zhang, W. J. Biomed. Mater. Res. Part A 2009, 88A, 448.
[16] Privett, B. J.; Youn, J.; Hong, S. A.; Lee, J.; Han, J.; Shin, J. H.; Schoenfisch, M. H. Langmuir 2011, 27, 9597.
[17] Jia, X. Q.; Herrera-Alonso, M.; McCarthy, T. J. Polymer 2006, 47, 4916.
[18] Herrera-Alonso, M.; McCarthy, T. J.; Jia, X. Q. Langmuir 2006, 22, 1646.
[19] Lee, H. J. J. Mater. Sci. 2009, 44, 4645.
[20] Saraf, R.; Lee, H. J.; Michielsen, S.; Owens, J.; Willis, C.; Stone, C.; Wilusz, E. J. Mater. Sci. 2011, 46, 5751.
[21] Zhang, L.; Zhang, X. Y.; Dai, Z.; Wu, J. J.; Zhao, N.; Xu, J. J. Colloid Interface Sci. 2010, 345, 116.
[22] Leng, B. X.; Shao, Z. Z.; de With, G.; Ming, W. H. Langmuir 2009, 25, 2456.
[23] Li, H.; Yu, S. R. Chem. Ind. Eng. Prog. 2014, 33, 947. (李好, 于思荣, 化工进展, 2014, 33, 947.)
[24] Bhushan, B.; Jung, Y. C. Prog. Mater. Sci. 2011, 56, 1.
[25] Yin, J. W.; Duan, Y.; Shao, Z. Z. Acta Chim. Sinica 2014, 72, 51. (尹建伟, 段郁, 邵正中, 化学学报, 2014, 72, 51.)
[26] Liu, Y.; Lv, X. Y.; Tao, Y.; Zhang, Y. H.; Di, M. W. Acta Polym. Sin. 2010, (6), 782. (刘杨, 吕新颖, 陶岩, 张彦华, 邸明伟, 高分子学报, 2010, (6), 782.)
[27] Liang, M. N.; Yao, J. R.; Chen, X.; Huang, L.; Shao, Z. Z. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1409.
[28] Lazauskas, A.; Baltrusaitis, J.; Grigaliunas, V.; Jucius, D.; Guobiene, A.; Prosycevas, I.; Narmontas, P. Plasma Chem. Plasma Process. 2014, 34, 271.
[29] Bico, J.; Marzolin, C.; Quürü, D. Europhys. Lett. 1999, 47, 220.
[30] Jiang, L.; Feng, L. Intelligent Bio-inspired Nano Interface Material, Chemical Industry Press, Beijing, 2007, pp. 130~136. (江雷, 冯琳, 仿生智能纳米界面材料, 化学工业出版社,北京, 2007, pp. 130~136.)
[31] Wolfram, E.; Faust, R. Wetting, Spreading and Adhesion, Ed.: Padday, J. F., Academic Press, London, 1979, p. 213.
[32] Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Langmuir 2000, 16, 5754.
[33] Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Langmuir 2002, 18, 5818.
[34] Hoefnagels, H.; Wu, D.; de With, G.; Ming, W. Langmuir 2007, 23, 13158.

Outlines

/