Effect of Topology of Hydrophobic Surfaces on Their Wetting States by Coarse-grained Simulations
Received date: 2014-07-04
Revised date: 2014-10-08
Online published: 2014-10-08
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21376089, 91334202).
Researches have showed that there are two factors that can affect the wettability of solid surface: the chemical composition and the surface roughness. In this communication, coarse-grained molecular dynamics simulations based on BMW-Martini force field were used to study the effect of surface topology of hydrophobic surfaces on their wetting states. Simulation results show that the increase of surface roughness has little effect on the hydrophobicity of a hydrophobic surface, but does have effect on its wetting state. For the studied pillar spacing ranges (d≤4.7 nm), the wetting behavior of water droplets on hydrophobic surfaces with pillared structure is affected by two factors, i.e., pillar spacing and pillar height. For each pillar spacing, there exists a critical pillar height; a wetting transition from the Wenzel state to the Cassie-Baxter state on pillared hydrophobic surface can be observed, and the critical pillar height increases with the pillar spacing. Through a further analysis for the studied surfaces, we find that the wetting transition is related to the ratio of pillar spacing to pillar height, when the ratio is no more than 2, the Wenzel wetting state can be observed; while when the ratio exceeds 2, the Cassie-Baxter state can be observed. Through energy analysis, we find that the wetting transition is mainly dependent on the Van der Waals interaction. When the roughness of a surface is below the critical value, the interaction between the water droplet and surface is very strong, so that water droplet can easily enter into the space between pillars on the surface to form Wenzel state; however, when exceeding the critical value, the interaction between water droplets and surface is weakened, and water droplet is difficult to enter into the gaps, so a Cassie-Baxter state can be observed. This work could provide some guidance for the development of hydrophobic materials.
Quan Xuebo , Dong Jiaqi , Zhou Jian . Effect of Topology of Hydrophobic Surfaces on Their Wetting States by Coarse-grained Simulations[J]. Acta Chimica Sinica, 2014 , 72(10) : 1075 -1078 . DOI: 10.6023/A14070508
[1] Yao, X.; Song, Y.; Jiang, L. Adv. Mater. 2011, 23, 719.
[2] Zhu, H.; Guo, Z.; Liu, W. Chem. Commun. 2014, 50, 3900.
[3] Guo, Z.; Liu, W.; Su, B.-L. J. Colloid Interface Sci. 2011, 353, 335.
[4] Liang, W.-X.; Zhang, Y.-B.; Wang, B.; Guo, Z.-G.; Liu, W.-M. Acta Chim. Sinica 2012, 70, 2393.(梁伟欣, 张亚斌, 王奔, 郭志光, 刘维民, 化学学报, 2012, 70, 2393.)
[5] Gao, Q.; Xu, Y.; Wu, D.; Sun, Y.-H. Acta Chim. Sinica 2009, 67, 1754. (高强, 徐耀, 吴东, 孙予罕, 化学学报, 2009, 67, 1754.)
[6] Liu, Y.-H.; Li, G.-J.; Chen, C.; Peng, X.-Y.; Wang, L.-Y.; Chen, Z.-F. CIESC J. 2014, 65, 1517. (刘云鸿, 李光吉, 陈超, 彭新艳, 王立莹, 陈志峰, 化工学报, 2014, 65, 1517.)
[7] An, R.; Zhu, Y.; Wu, N.; Xie, W.; Lu, J.; Feng, X.; Lu, X. ACS Appl. Mater. Interfaces 2013, 5, 2692.
[8] Li, L.; Zhu, Y.; Lu, X.; Wei, M.; Zhuang, W.; Yang, Z.; Feng, X. Chem. Commun. 2012, 48, 11525.
[9] Mi, L.; Jiang, S. Angew. Chem., Int. Ed. 2014, 53, 1746.
[10] Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L. Acc. Chem. Res. 2010, 43, 368.
[11] Chen, Z.; Dong, L.; Yang, D.; Lu, H. Adv. Mater. 2013, 25, 5352.
[12] Lafuma, A.; Quere, D. Nat. Mater. 2003, 2, 457.
[13] Ho, A. Y. Y.; Yeo, L. P.; Lam, Y. C.; Rodriguez, I. ACS Nano 2011, 5, 1897.
[14] Nosonovsky, M.; Bhushan, B. Nano Lett. 2007, 7, 2633.
[15] Narhe, R. D.; Beysens, D. A. Langmuir 2007, 23, 6486.
[16] Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.
[17] Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546.
[18] Marmur, A.; Bittoun, E. Langmuir 2009, 25, 1277.
[19] McHale, G.; Newton, M. I.; Shirtcliffe, N. J. J. Phys.: Condens. Matter 2009, 21, 464122.
[20] Yong, X.; Zhang, L. T. Langmuir 2009, 25, 5045.
[21] Hyuk-Min, K.; Paxson, A. T.; Varanasi, K. K.; Patankar, N. A. Phys. Rev. Lett. 2011, 106, 036102.
[22] Rahman, M. A.; Jacobi, A. M. Langmuir 2012, 28, 13441.
[23] Papadopoulos, P.; Mammen, L.; Deng, X.; Vollmer, D.; Butt, H.-J. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 3254.
[24] Murakami, D.; Jinnai, H.; Takahara, A. Langmuir 2014, 30, 2061.
[25] Koishi, T.; Yasuoka, K.; Fujikawa, S.; Ebisuzaki, T.; Zeng, X. C. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8435.
[26] Khan, S.; Singh, J. K. Mol. Simul. 2014, 40, 458.
[27] Metya, A. K.; Khan, S.; Singh, J. K. J. Phys. Chem. C 2014, 118, 4113.
[28] Saha, J. K.; Matin, M. A.; Jang, J.; Jang, J. Bull. Korean Chem. Soc. 2013, 34, 1047.
[29] Sergi, D.; Scocchi, G.; Ortona, A. J. Chem. Phys. 2012, 137, 094904.
[30] Xu, X.; Vereecke, G.; Chen, C.; Pourtois, G.; Armini, S.; Verellen, N.; Tsai, W.-K.; Kim, D.-W.; Lee, E.; Lin, C.-Y.; Van Dorpe, P.; Struyf, H.; Holsteyns, F.; Moshchalkov, V.; Indekeu, J.; De Gendt, S. ACS Nano 2014, 8, 885.
[31] Wu, C.-D.; Kuo, L.-M.; Lin, S.-J.; Fang, T.-H.; Hsieh, S.-F. Comput. Mater. Sci. 2012, 53, 25.
[32] Savoy, E. S.; Escobedo, F. A. Langmuir 2012, 28, 16080.
[33] Savoy, E. S.; Escobedo, F. A. Langmuir 2012, 28, 3412.
[34] Jabbarzadeh, A. Soft Matter 2013, 9, 11598.
[35] Wu, Z.; Cui, Q.; Yethiraj, A. J. Chem. Theory Comput. 2011, 7, 3793.
[36] Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. J. Phys. Chem. B 2007, 111, 7812.
[37] Wu, Z.; Cui, Q.; Yethiraj, A. J. Phys. Chem. B 2010, 114, 10524.
[38] Dong, J.; Zhou, J. Macromol. Theory Simul. 2013, 22, 174.
[39] Yu, G.; Liu, J.; Zhou, J. J. Phys. Chem. B 2014, 118, 4451.
[40] Dong, J.; Li, J.; Zhou, J. Langmuir 2014, 30, 5599.
[41] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008, 4, 435.
[42] Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Hsing, L.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
/
〈 |
|
〉 |