Oxidative Desulfurization of Model Diesel with O2 Catalyzed by Oxidative-thermoregulated Bifunctional Ionic Liquids
Received date: 2014-08-06
Online published: 2014-10-22
Supported by
Project supported by the National Natural Science Foundation of China (No. 21176129), the Foundation for Outstanding Young Scientist in Shandong Province (No. BS2011NJ008) and the Project of Basic Research in Qingdao City (No. 13-1-4-194-jch).
A series of ammonium oxidative-thermoregulated bifunctional ionic liquids (ILs) have been synthesized by introducing the thermoregulated structural unit (PEG chain) into ammonium cation and using heteropolyanion as catalytic oxidation group. The prepared ionic liquids have the thermoregulated solubility in toluene/n-dodecane mixed solvent. IL/toluene/n-dodecane system owns the feature of "homogeneous at high temperature, heterogeneous at low temperature". The effects of the dosage of the ionic liquid, the polymerization degree of the ionic liquid, and the volume ratio of toluene to n-dodecane on the thermoregulation of the system have been investigated. Model diesel is prepared by dissolving the model sulfur-containing compound thiophene in n-dodecane. By using the ionic liquid as catalyst, the thermoregulated IL/toluene/n-dodecane biphasic system has been used for catalytic oxidative desulfurization of model diesel with O2 as oxidant to achieve the integration of homogeneous reaction and heterogeneous separation. So, the highly efficient catalysis and the simply separation of catalyst are achieved. The selected catalytic system is the polymerization degree of the ionic liquid n=111 and V(toluene):V(model oil)=1:1. The effects of the alkyl chain of the ionic liquid, reaction temperature, reaction time and the pressure of oxygen on the desulfurization rate have been fully investigated. The selected optimal conditions are as follows: the alkyl chain C12, reaction temperature 100 ℃, reaction time 2 h, and the pressure of oxygen 2.0 MPa. Under the optimal conditions, the sulfur in model diesel nearly can be completely removed by using DMF as extraction agent. After the reaction, the catalyst can be automatically precipitated from the oil phase at the room temperature. Therefore, the recycle of the catalyst is easily realized. The recyclability of the ionic liquid catalyst is investigated. The result has showed that the catalyst exhibits very excellent recyclability. Under the above selected reaction conditions, the desulfurization rate still can reach above 95% after 11 recycles of the ionic liquid catalyst.
Yu Fengli , Tang Huibao , Liu Chunyu , Xie Congxia , Yu Shitao . Oxidative Desulfurization of Model Diesel with O2 Catalyzed by Oxidative-thermoregulated Bifunctional Ionic Liquids[J]. Acta Chimica Sinica, 2014 , 72(11) : 1152 -1156 . DOI: 10.6023/A14080570
[1] Kulkarni, P. S.; Afonso, C. A. M. Green Chem. 2010, 12, 1139.
[2] Zhao, D. S.; Li, J. P.; Zhang, J.; Ren, P. B.; Ge, J. J.; Ren, T. J.; Cui, Y. Chin. J. Org. Chem. 2014, 37, 1462. (赵地顺, 李俊盼, 张娟, 任培兵, 葛京京, 任腾杰, 崔云, 有机化学, 2014, 37, 1462.)
[3] Rothlisberger, A.; Prins, R. J. Catal. 2005, 235, 229.
[4] Bej, S. K.; Maity, S. K.; Turaga, U. T. Energy Fuels 2004, 18, 1227.
[5] Liu, W. Q.; Zhou, H.; Lei, W. N.; Shang, T. M.; Zhang, Q.; Sun, K. D. Acta Chim. Sinica 2011, 69, 1622. (刘维桥, 周虎, 雷卫宁, 尚通明, 张强, 孙桂大, 化学学报, 2011, 69, 1622.)
[6] Campos-Martin, J. M.; Capel-Sanchez, M. C.; Fierro, J. L. G. Green Chem. 2004, 6, 557.
[7] Lo, W. H.; Yang, H. Y.; Wei, G. T. Green Chem. 2003, 5, 639.
[8] Zhang, W.; Xu, K.; Zhang, Q.; Liu, D. L.; Wu, S. Y.; Verpoort, F.; Song, X. M. Ind. Eng. Chem. Res. 2010, 49, 11760.
[9] Zhu, W. S.; Wu, P. W.; Yang, L.; Chang, Y. H.; Chao, Y. H.; Li, H. M.; Jiang, Y. Q.; Jiang, W.; Xun, S. H. Chem. Eng. J. 2013, 229, 250.
[10] Zhang, W.; Xu, K.; Zhang, Q.; Liu, D. L.; Wu, S. Y.; Verpoort, F.; Song, X. M. Ind. Eng. Chem. Res. 2010, 49, 11760.
[11] Jiang, W.; Zhu, W. S.; Chang, Y. H.; Li, H. M.; Chao, Y. H.; Xiong, J.; Liu, H.; Zhu, F. X. Energy Fuels 2014, 28, 2754.
[12] Xu, J. H.; Zhao, S.; Chen, W.; Wang, M.; Song, Y. F. Chem. Eur. J. 2012, 18, 4775.
[13] Lu, L.; Cheng, S. F.; Gao, J. B.; Gao, G. H.; He, M. Y. Energy Fuels 2007, 21, 383.
[14] Zhao, D. S. H.; Wang, J. L.; Zhou, E. P. Green Chem. 2007, 9, 1219.
[15] Rao, T. V.; Sain, B.; Kafola, S.; Nautiyal, B. R.; Sharma, Y. K.; Nanoti, S. M.; Garg, M. O. Energy Fuels 2007, 21, 3420.
[16] Zhou, X. R.; Li, J.; Wang, X. N.; Jin, K.; Ma, W. Fuel Process. Technol. 2009, 90, 317.
[17] Lu, H.; Zhang, Y. Y. N.; Jiang, Z. X.; Li, C. Green Chem. 2010, 12, 1954.
[18] Tang, N. F.; Zhang, Y. N.; Lin, F.; Lu, H. Y.; Jiang, Z. X.; Li, C. Chem. Commun. 2012, 48, 11647.
[19] Lü, H. Y.; Gao, J. B.; Jiang, Z. X.; Yang, Y. X.; Song, B.; Li, C. Chem. Commun. 2007, 6, 150.
[20] Tang, N. F.; Zhao, X. P.; Jiang, Z. X.; Li, C. Chin. J. Catal. 2014, 35, 1433. (唐南方, 赵小平, 蒋宗轩, 李灿, 催化学报, 2014, 35, 1433.)
[21] Hill, C. L.; Damica Gall, R. J. Mol. Catal. A: Chem. 1996, 114, 103.
[22] Wang, S. S.; Liu, W.; Wan, Q. X.; Liu, Y. Green Chem. 2009, 11, 1589.
[23] Qiao, Y. X.; Hou, Z. S.; Li, H.; Hu, Y.; Feng, B.; Wang, X. R.; Hua, L.; Huang, Q. F. Green Chem. 2009, 11, 1955.
[24] Yang, H. G.; Qi, X. F.; Wen, L.; Lu, C. X.; Cheng, G. B. Ind. Eng. Chem. Res. 2011, 50, 11440.
[25] Leng, Y.; Wang, J.; Zhu, D. R.; Ren, X. Q.; Ge, H. Q.; Shen, L. Angew. Chem., Int. Ed. 2009, 48, 168.
[26] Zhu, W. S.; Wu, P. W.; Chao, Y. H.; Li, H. M.; Zou, F.; Xun, S. H.; Zhu, F. X.; Zhao, Z. Ind. Eng. Chem. Res. 2013, 52, 17399.
[27] Huang, W. L.; Zhu, W. S.; Li, H. M.; Shi, H.; Zhu, G. P.; Liu, H.; Chen, G. Y. Ind. Eng. Chem. Res. 2010, 49, 8998.
[28] Yu, F. L.; Wang, R. Acta Chim. Sinica 2014, 72, 105. (于凤丽, 王睿, 化学学报, 2014, 72, 105.)
[29] An, Y.; Lu, L.; Li, C. M.; Cheng, S. F.; Gao, G. H. Chin. J. Catal. 2009, 30, 1222. (安莹, 陆亮, 李才猛, 程时富, 高国华, 催化学报, 2009, 30, 1222.)
[30] Yu, F. L.; Wang, Y. Y.; Liu, C. Y.; Xie, C. X.; Yu, S. T. Chem. Eng. J. 2014, 255, 372.
[31] Griee, I. D.; Hvarey, P. J.; Jenkins, I. D. Tetrahedron Lett. 1996, 37, 1087.
[32] Behr, A.; Miao, Q. J. Mol. Catal. A: Chem. 2004, 222, 127.
/
〈 |
|
〉 |