Preparation and Supercapacitive Performance of Polyaniline Covalently Grafted Carbon Nanotubes Composite Material
Received date: 2014-06-03
Online published: 2014-11-06
Supported by
Project supported by the Fundamental Research Technological Convergence Special Fund of Nanjing University of Aeronautics and Astronautics (No. 3082014NZ2014102), Chinese Postdoctoral Foundation (No. 2011M500910), Postdoctoral Foundation of Jiangsu Province (No. 1201014B), Natural Science Foundation of China (Nos. 51372116, 21173120) and Undergraduate Innovative Project Foundation of NUAA (Nos. ZT2013073, ZT2013086).
Recently, covalent functionalization carbon nanotubes have been received special attention because of the expansive application prospect in the areas of nanoscience and nanotechnology. Moreover, covalent functionalization of carbon nanotubes can improve the solubilization of carbon nanotubes. In particular, polyaniline, due to its high electronic conductivity, good environmental stability, easy preparation and reversible acid-base doping-dedoping chemistry, has been one of the most studied conducting polymers. Recently, CNTs-PANI composites were investigated widely, such as supercapacitor, optoelectronic devices, sensing and catalysis as well. In this work, we perform in situ polymerization method at low temperatures obtaining uniform structures PANI grafted on CNTs (which has been covalently functionalized with NH2 groups on its surface) composites. Concerning CNTs-NH-PANI composites, PANI could be covalently grafted onto CNTs through NH2 groups. Due to the fact that CNTs-NH-PANI composites have abundant -NH2 groups on their surface, serving as anchor centers for polymerization of aniline monomer. Introduction of NH2 groups can not only increase the dispersion of carbon nanotubes itself, but also can be as growth sites to form PANI uniform grafted to the "core-shell" structure of carbon nanotubes in the growth process of PANI. More importantly, PANI uniformly grafted on CNTs is prone to disperse the bundle of CNTs into separated lines and improve water dispersibility of obtained CNTs-NH-PANI composites. Potential application of the composite material as high performance supercapacitor has been explored. Composite material samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and electrochemical methods and so on. TEM results showed that the hierarchical CNTs-PANI composites with uniform morphology have been successfully prepared due to hydrophilic groups OH and NH2 are successfully covalently functionalized on the surface of CNTs. Moreover, the electrochemical measurement show that CNTs-NH-PANI composites have high specific capacitance as supercapacitor material. At the current density of 0.1 A/g, the specific capacity can reach 251.2 F/g. For PANI, the capacitance contribution is higher in covalently grafted CNTs-g-PANI composites than PANI-c-CNTs. At the charge-discharge test, the composite material capacity retention stability rate at 64% after 5000 charge discharge test, higher than that of PANI-c-CNTs 48% significantly at the current density of 1 A/g.
Key words: carbon nanotube; polyaniline; covalently; supercapacitor
Gao Zhenzhen , Tong Hao , Chen Jianhui , Yue Shihong , Bai Wenlong , Zhang Xiaogang , Pan Yanfei , Shi Ming , Song Yuxiang . Preparation and Supercapacitive Performance of Polyaniline Covalently Grafted Carbon Nanotubes Composite Material[J]. Acta Chimica Sinica, 2014 , 72(11) : 1175 -1181 . DOI: 10.6023/A14060430
[1] Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845.
[2] Lew, A.; Gal, M. J. Power Sources 2007, 173, 822.
[3] Bohlen, O.; Kowal, J.; Sauer, J. J. Power Sources 2007, 172, 468.
[4] Jiang, L.; Yan, J.; Zhou, Y.; Hao, L. J. Solid State Electrochem. 2013, 17, 2949.
[5] Zhang, H.; Cao, G.; Wang, W.; Yuan, K.; Zhang, X. Electrochim. Acta 2009, 54, 1153.
[6] Chou, S.; Wang, J.; Chew, S.; Liu, H.; Dou, S. Electrochem. Commun. 2008, 10, 1724.
[7] Chen, J.; Li, C.; Shi, G. J. Phys. Chem. Lett. 2013, 4, 1244.
[8] Dai, L. M.; Chang, D.; Baek, B. Small 2012, 8, 1130.
[9] Hirsch, A. Angew. Chem., Int. Ed. 2002, 41, 1853.
[10] Ma, L.; Lu, J.; He, H. Acta Chim. Sinica 2012, 70, 567. (马磊, 陆金东, 何洪波, 化学学报, 2012, 70, 567.)
[11] Zheng, X.; Gao, H.; Ding, A. Chin. J. Org. Chem. 2013, 33, 1509. (郑兴良, 高鸿盛, 丁爱顺, 有机化学, 2013, 33, 1509.)
[12] Sun, Q.; Yu, Y.; Zhang, N. Chin. J. Org. Chem. 2012, 32, 889. (孙庆, 于颖, 张南, 有机化学, 2012, 32, 889.)
[13] An, J.; Liu, J.; Zhou, Y. J. Phys. Chem. C 2012, 116, 19699.
[14] Shaffer, M.; Koziol, K. J. Chem. Commun. 2002, 18, 2074.
[15] Jeon, I.; Kang, Y.; Baek, W. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3103.
[16] Gui, D.; Liu, C.; Chen, F.; Liu, J. Appl. Surf. Sci. 2014, 307, 172.
[17] Jin, Y.; Fang, M.; Jia, M. J. Appl. Surf. Sci. 2014, 308, 333.
[18] Gao, Z.; Wang, F.; Jiang, K. J. Electrochim. Acta 2014, 133, 325.
[19] Huo, Y.; Zhang, S.; Zhang, H. J. Appl. Polym. Sci. 2014, 131, 40575.
[20] Hu, H.; Liu, S.; Hanif, M.; Chen, S.; Hou, H. J. Power Sources 2014, 268, 451.
[21] Souza, T.; Oliveira, M.; Zarbin, A. J. Power Sources 2014, 260, 34.
[22] Han, J.; Xu, G.; Ding, B. J. Mater. Chem. A 2014, 2, 5352.
[23] Chen, J.; Tong, H.; Gao, Z. Acta Chim. Sinica 2013, 71, 1647. (陈建慧, 佟浩, 高珍珍, 化学学报, 2013, 71, 1647.)
[24] Li, Z.; Zhang, H.; Liu, Q. Carbon 2014, 71, 257.
[25] Remyamol, T.; John, H.; Gopinath, P. Carbon 2013, 59, 308.
[26] Kumar, N.; Choi, H.; Shin, Y. ACS Nano 2012, 6, 1715.
[27] Chen, S.; Wei, Z.; Qi, X. J. Am. Chem. Soc. 2012, 134, 13252.
[28] Kotal, M.; Thakur, A. K.; Bhowmick, A. K. ACS Appl. Mater. Interfaces 2013, 5, 8374.
[29] Haq, A.; Lim, J.; Yun, J.; Kim, S. Small 2013, 22, 3829.
[30] Kumar, M.; Singh, K.; Dhawan, S.; Hur, S. Chem. Eng. J. 2013, 231, 397.
[31] Liu, J.; An, J.; Zhou, Y.; Ma, Y.; Li, S. ACS Appl. Mater. Interfaces 2012, 4, 2870.
[32] Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. ACS Nano 2010, 4, 1963.
[33] Lee, H.; Vogel, W.; Chu, P. J. Langmuir 2011, 27, 14654.
[34] Kumar, N.; Jeong, Y. Polym. Int. 2010, 59, 1367.
[35] Sainz, R.; Benito, A.; Maser, W. Adv. Mater. 2005, 17, 278.
[36] Wei, Z.; Wan, M.; Dai, L. Adv. Mater. 2003, 15, 136.
/
〈 |
|
〉 |