Research Progress in Preparation and Applications of ZnO Nanowire/rod Arrays by Hydrothermal Method
Received date: 2014-08-20
Online published: 2014-11-19
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51205273, 61340053), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 20120007), the Youth Foundation of Taiyuan University of Technology (No. 2012L034) and the Excellent Innovation Programs for Postgraduate in Shanxi Province (No. 20133028).
The quality of zinc oxide (ZnO) nanowire/rod arrays determines the performance of the constructed photoelectric devices. In order to prepare high-quality ZnO nanowire/rod arrays with greater surface to volume ratio, better verticality and separate roots, a brief summary has been made about the research progress of the controllable preparation of ZnO nanowire/rod arrays using two-step hydrothermal method in this paper. Moreover, how the seed layer, growth solution and preparation method influence their morphology has been discussed respectively, and the mechanisms of ammonia, hexamethylenetetramine and polyethyleneimine in promoting the growth of nanowire/rod arrays have been particularly analyzed. At the same time, the method of controllable preparation of ZnO nanowire arrays based on microfluidic technique has been put forward, which can improve the growth efficiency of nanowire arrays. Finally, an introduction has been made about how the morphology of ZnO nanowire/rod arrays plays an important role in improving the performance of dye-sensitized solar cells, nanogenerators, gas sensors and field emission devices, and an outlook of future development trend of two-step hydrothermal method in preparing ZnO nanowire/rod arrays is also provided.
Hao Rui , Deng Xiao , Yang Yibiao , Chen Deyong . Research Progress in Preparation and Applications of ZnO Nanowire/rod Arrays by Hydrothermal Method[J]. Acta Chimica Sinica, 2014 , 72(12) : 1199 -1208 . DOI: 10.6023/A14080593
[1] Zhou, X.-Y. Ph.D. Dissertation, China University of Petroleum (East China), Qingdao, 2011. (周小岩, 博士论文, 中国石油大学(华东), 青岛, 2011.)
[2] Xiong, J.-F.; Xiao, P.; Wu, Q.; Wang, X.-Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 433. (熊静芳, 肖佩, 吴强, 王喜章, 胡征, 化学学报, 2014, 72, 433.)
[3] Zhang, Y. One-dimensional ZnO Nanomaterials, Science Press, Beijing, 2010, pp. 1~3. (张跃, 一维氧化锌纳米材料, 科学出版社, 北京, 2010, pp. 1~3.)
[4] He, Y.; Wang, J.-A.; Sang, W.-B.; Wu, R.-F.; Yan, L.-L.; Fang, Y.-Y. Acta Chim. Sinica 2005, 63, 1037. (贺英, 王均安, 桑文斌, 吴若峰, 颜莉莉, 方云英, 化学学报, 2005, 63, 1037.)
[5] Lee, Y. M.; Yang, H. W. J. Solid State Chem. 2011, 184, 615.
[6] Qiu, J.-J.; Li, X.-M.; Zhuge, F. W.; Gan, X.-Y.; Gao, X.-D.; He, W.-Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H. Nanotechnology 2010, 21, 195602.
[7] Wang, J.-X.; Sun, X.-W.; Yang, Y.; Huang, H.; Lee, Y. C.; Tan, O.-K.; Vayssieres, L. Nanotechnology 2006, 17, 4995.
[8] Gao, Y.-F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Cryst. Growth Des. 2007, 7, 2467.
[9] Lupan, O.; Pauporté, T.; Viana, B. Adv. Mater. 2010, 22, 3298.
[10] Cho, J. W.; Lee, C. S.; Lee, K. I.; Kim, S. M.; Kim, S. H.; Kim, Y. K. Appl. Phys. Lett. 2012, 101, 083905.
[11] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P.-D. Nat. Mater. 2005, 4, 455.
[12] Chen, C. H.; Chang, S. J.; Chang, S. P.; Li, M. J.; Chen, I.; Hsueh, T. J.; Hsu, C. L. Chem. Phys. Lett. 2009, 476, 69.
[13] Hsueh, T. J.; Chen, Y. W.; Chang, S. J.; Wang, S. F.; Hsu, C. L.; Lin, Y. R.; Lin, T. S.; Chen, I. Sens. Actuators, B 2007, 125, 498.
[14] Xu, C.-K.; Shin, P.; Cao, L.-L.; Gao, D. J. Phys. Chem. C 2010, 114, 125.
[15] Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P.-D. Nano Lett. 2005, 5, 1231.
[16] Wang, L.-S.; Zhang, X.-Z.; Zhao, S.-Q.; Zhou, G.-Y.; Zhou, Y.-L.; Qi, J.-J. Appl. Phys. Lett. 2005, 86, 024108.
[17] Tien, L. C.; Pearton, S. J.; Norton, D. P.; Ren, F. J. Mater. Sci. 2008, 43, 6925.
[18] Guo, M.; Diao, P.; Cai, S.-M. Acta Chim. Sinica 2003, 61, 1165. (郭敏, 刁鹏, 蔡生民, 化学学报, 2003, 61, 1165.)
[19] Elias, J.; Tena Zaera, R.; Lévy Clément, C. J. Electroanal. Chem. 2008, 621, 171.
[20] Fan, H. J.; Lee, W.; Scholz, R.; Dadgar, A.; Krost, A.; Nielsch, K.; Zacharias, M. Nanotechnology 2005, 16, 913.
[21] Zhang, Y. One-dimensional ZnO Nanomaterials, Science Press, Beijing, 2010, pp. 104~106. (张跃, 一维氧化锌纳米材料, 科学出版社, 北京, 2010, pp. 104~106.)
[22] Vayssieres, L. Adv. Mater. 2003, 15, 464.
[23] Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3350.
[24] Xu, C.-K.; Wu, J.-M.; Desai, U. V.; Gao, D. J. Am. Chem. Soc. 2011, 133, 8122.
[25] Liou, S. C.; Hsiao, C. S.; Chen, S. Y. J. Cryst. Growth 2005, 274, 438.
[26] Tao, Y.-L.; Fu, M.; Zhao, A.-L.; He, D.-W.; Wang, Y.-S. J. Alloys Compd. 2010, 489, 99.
[27] Sun, Y.; George Ndifor Angwafor, N.; Jason Riley, D.; Ashfold, M. N. R. Chem. Phys. Lett. 2006, 431, 352.
[28] Zheng, J.-H.; Zhang, X.-K.; Lu, H.-F. Acta Chim. Sinica 2011, 69, 2434. (郑建华, 张晓凯, 卢慧粉, 化学学报, 2011, 69, 2434.)
[29] Huang, Q.-L.; Fang, L.; Chen, X.; Saleem, M. J. Alloys Compd. 2011, 509, 9456.
[30] Tan, Y.-W.; Xue, X.-Y.; Peng, Q.; Zhao, H.; Wang, T.-H.; Li, Y.-D. Nano Lett. 2007, 7, 3723.
[31] Yu, Y.-X.; Hao, W.-C.; Du, Y.; Wang, C.-Z.; Wang, T.-M. J. Nanosci. Nanotechnol. 2009, 9, 909.
[32] Xu, S.; Wang, Z.-L. Nano Res. 2011, 4, 1013.
[33] Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P.-D. Inorg. Chem. 2006, 45, 7535.
[34] Qiu, J.-J.; Li, X.-M.; He, W.-Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H.; Lee, J. H.; Kim, Y. D. Nanotechnology 2009, 20, 155603.
[35] Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J. J. Sol-Gel Sci. Technol. 2006, 39, 49.
[36] Chen, L.-L.; Li, X.-D.; Qu, L.-L.; Gao, C.-T.; Wang, Y.-Q.; Teng, F.; Zhang, Z.-X.; Pan, X.-J.; Xie, E.-Q. J. Alloys Compd. 2014, 586, 766.
[37] Zhu, S.-B.; Chen, X.-N.; Zuo, F.-B.; Jiang, M.; Zhou, Z.-W.; Hui, D. J. Solid State Chem. 2013, 197, 69.
[38] Zhou, Y.; Wu, W.-B.; Hu, G.-D.; Wu, H.-T.; Cui, S.-G. Mater. Res. Bull. 2008, 43, 2113.
[39] Yin, X.-T.; Que, W.-X.; Fei, D.; Xie, H.-X.; He, Z.-L.; Wang, G.-F. Electrochim. Acta 2013, 89, 561.
[40] Xu, C.-K.; Gao, D. J. Phys. Chem. C 2012, 116, 7236.
[41] Desai, U. V.; Xu, C.-K.; Wu, J.-M.; Gao, D. Nanotechnology 2012, 23, 205401.
[42] Xu, C.; Wang, X.-D.; Wang, Z.-L. J. Am. Chem. Soc. 2009, 131, 5866.
[43] Hsu, Y. F.; Xi, Y. Y.; Djuriši?, A. B.; Chan, W. K. Appl. Phys. Lett. 2008, 92, 133507.
[44] Gao, H.-M.; Fang, G.-J.; Wang, M.-J.; Liu, N.-S.; Yuan, L.-Y.; Li, C.; Ai, L.; Zhang, J.; Zhou, C.-H.; Wu, S.-J. Mater. Res. Bull. 2008, 43, 3345.
[45] Deng, J.-P.; Wang, M.-Q.; Song, X.-H.; Liu, J. J. Alloys Compd. 2014, 588, 399.
[46] Wang, L. S.; Tsan, D.; Stoeber, B.; Walus, K. Adv. Mater. 2012, 24, 3999.
[47] Chen, L. Y.; Yin, Y. T. Cryst. Growth Des. 2012, 12, 1055.
[48] Hu, J.; Deng, X.; Sang, S.-B.; Li, P.-W.; Li, G.; Zhang, W.-D. Acta Phys. Sin. 2014, 63, 207102-1. (胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋, 物理学报, 2014, 63, 207102-1.)
[49] Gao, C.-T.; Li, X.-D.; Wang, Y.-Q.; Chen, L.-L.; Pan, X.-J.; Zhang, Z.-X.; Xie, E.-Q. J. Power Sources 2013, 239, 458.
[50] Hochbaum, A. I.; Yang, P.-D. Chem. Rev. 2009, 110, 527.
[51] Pradhan, B.; Batabyal, S. K.; Pal, A. J. Sol. Energy Mater. Sol. Cells 2007, 91, 769.
[52] Baxter, J. B.; Aydil, E. S. Appl. Phys. Lett. 2005, 86, 053114.
[53] Qin, Z.; Liao, Q.-L.; Huang, Y.-H.; Tang, L.-D.; Zhang, X.-H.; Zhang, Y. Mater. Chem. Phys. 2010, 123, 811.
[54] Wang, Z.-L.; Song, J.-H. Science 2006, 312, 242.
[55] Zhu, G.; Yang, R.-S.; Wang, S.-H.; Wang, Z.-L. Nano Lett. 2010, 10, 3151.
[56] Lu, M. P.; Song, J.-H.; Lu, M. Y.; Chen, M. T.; Gao, Y.-F.; Chen, L. J.; Wang, Z.-L. Nano Lett. 2009, 9, 1223.
[57] Riaz, M.; Song, J.-h.; Nur, O.; Wang, Z.-L.; Willander, M. Adv. Funct. Mater. 2011, 21, 628.
[58] Liao, L.; Lu, H.-B.; Li, J.-C.; He, H.; Wang, D.-F.; Fu, D.-J.; Liu, C.; Zhang, W.-F. J. Phys. Chem. C 2007, 111, 1900.
[59] Chang, C. M.; Hon, M. H.; Leu, I. C. Sens. Actuators, B 2010, 151, 15.
[60] Chang, C. J.; Hung, S. T.; Lin, C. K.; Chen, C. Y.; Kuo, E. H. Thin Solid Films 2010, 519, 1693.
[61] Liu, F. T.; Gao, S. F.; Pei, S. K.; Tseng, S. C.; Liu, C. H. J. J. Taiwan Inst. Chem. Eng. 2009, 40, 528.
[62] Liu, J.-P.; Xu, C.-X.; Zhu, G.-P.; Li, X.; Cui, Y.-P.; Yang, Y.; Sun, X.-W. J. Phys. D: Appl. Phys. 2007, 40, 1906.
[63] Wang, X.-D.; Zhou, J.; Lao, C.-S.; Song, J.-H.; Xu, N.-S.; Wang, Z.-L. Adv. Mater. 2007, 19, 1627.
[64] Wang, W.-Z.; Zeng, B.-Q.; Yang, J.; Poudel, B.; Huang, J.; Naughton, M. J.; Ren, Z. Adv. Mater. 2006, 18, 3275.
[65] Liu, J.; She, J.-C.; Deng, S.-Z.; Chen, J.; Xu, N. S. J. Phys. Chem. C 2008, 112, 11685. Hsiao, C. H.; Huang, C. S.; Young, S. J.; Chang, S. J.; Guo, J. J.; Liu, C. W.; Yang, T. Y. IEEE Trans. Electron Devices 2013, 60, 1905.
/
〈 |
|
〉 |