Perspective

Solution-Processed Organic-Inorganic Hybrid Perovskites: A Class of Dream Materials Beyond Photovoltaic Applications

  • Wang Nana ,
  • Si Junjie ,
  • Jin Yizheng ,
  • Wang Jianpu ,
  • Huang Wei
Expand
  • a Key Laboratory of Flexible Electronics KLOFE, Institute of Advanced Materials IAM, Jiangsu National Synergistic Innovation Center for Advanced Materials SICAM, Nanjing Tech University NanjingTech, Nanjing 211816;
    b Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027;
    c Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, Chemistry Department, Zhejiang University, Hangzhou 310027

Received date: 2014-10-14

  Online published: 2014-12-08

Supported by

Project supported by the Jiangsu Natural Science Foundation (Nos. BK20131413, BK20140952), the National High Technology Research and Development Program of China (No. 2011AA050520), the National Basic Research Program of China (No. 2015CB932200), the Jiangsu Specially-Appointed Professor program, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Research Program of Silicon Materials National Laboratory of Zhejiang University, the National Natural Science Foundation of China (Nos. 51172203, 61405091, 11474164), the Natural Science Funds for Distinguished Young Scholar of Zhejiang Province (No. R4110189), and the Public Welfare Project of Zhejiang Province (No. 2013C31057).

Abstract

Organic-inorganic hybrid perovskite is a class of direct-bandgap semiconductors that can be processed as thin films from solutions by low-temperature methods. Among various solution-processable semiconductor materials, the hybrid perovskites exhibit unique combination of low bulk-trap densities, remarkable ambipolar transport properties, good broadband absorption characteristics and long charge carrier diffusion lengths, making them ideal for photovoltaic applications. Furthermore, as direct bandgap semiconductors with low bulk trap densities, the hybrid perovskite films possess remarkable luminescent properties. The bandgap of the hybrid perovskites can be tuned by crystal engineering, i.e. tuning the composition at molecular levels. These intriguing properties indicate that the hybrid perovskites may also find applications in light-emitting diodes and lasing. This paper reviews the unique properties and current research progresses of this class of dream material and provides our perspective of future directions.

Cite this article

Wang Nana , Si Junjie , Jin Yizheng , Wang Jianpu , Huang Wei . Solution-Processed Organic-Inorganic Hybrid Perovskites: A Class of Dream Materials Beyond Photovoltaic Applications[J]. Acta Chimica Sinica, 2015 , 73(3) : 171 -178 . DOI: 10.6023/A14100711

References

[1] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[2] Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 408.
[3] Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486.
[4] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[5] Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Nat. Photonics 2014, 8, 128.
[6] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[7] Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316.
[8] Liu, D.; Kelly, T. L. Nat. Photonics 2014, 8, 133.
[9] Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G. Adv. Mater. 2014, 26, 4991.
[10] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
[11] Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Chen, H. Z. Acta Chim. Sinica 2011, 69, 627. (杨志胜, 杨立功, 吴刚, 汪茫, 陈红征, 化学学报, 2011, 69, 627.)
[12] Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Tang, B. Z.; Chen, H. Z. Acta Chim. Sinica 2008, 66, 1611. (杨志胜, 杨立功, 吴刚, 汪茫, 唐本忠, 陈红征, 化学学报, 2008, 66, 1611.)
[13] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
[14] Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622.
[15] Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Nat. Mater. 2014, 13, 476.
[16] Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584.
[17] Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341.
[18] Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.
[19] Bai, S.; Wu, Z.; Wu, X.; Jin, Y.; Zhao, N.; Chen, Z.; Mei, Q.; Wang, X.; Ye, Z.; Song, T.; Liu, R.; Lee, S.; Sun, B. Nano Res. 2014, 7, 1749.
[20] Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8, 9815.
[21] Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Solid State Commun. 2003, 127, 619.
[22] Brivio, F.; Walker, A. B.; Walsh, A. APL Mater. 2013, 1, 042111.
[23] Cai, B.; Xing, Y.; Yang, Z.; Zhang, W.-H.; Qiu, J. Energy Environ. Sci. 2013, 6, 1480.
[24] Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Nat. Commun. 2013, 4, 1.
[25] Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. J. Phys. Chem. Lett. 2014, 5, 1421.
[26] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
[27] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[28] Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1994, 65, 676.
[29] Hattori, T.; Taira, T.; Era, M.; Tsutsui, T.; Saito, S. Chem. Phys. Lett. 1996, 254, 103.
[30] Chondroudis, K.; Mitzi, D. B. Chem. Mater. 1999, 11, 3028.
[31] Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nat. Nanotechnol. 2014, 9, 687.
[32] Xia, R.; Heliotis, G.; Bradley, D. D. C. Appl. Phys. Lett. 2003, 82, 3599.
[33] Namdas, E. B.; Tong, M.; Ledochowitsch, P.; Mednick, S. R.; Yuen, J. D.; Moses, D.; Heeger, A. J. Adv. Mater. 2009, 21, 799.
[34] Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Nat. Nanotechnol. 2012, 7, 335.

Outlines

/