Large-area High-performance SERS Substrates Prepared with a Combination of Mesoporous Silica Film and AuAg Alloy film
Received date: 2014-10-23
Online published: 2014-12-15
Supported by
Project supported by the Major National Scientific Instrument and Equipment Development Project of China (No. 2011YQ0301240802), the National Natural Science Foundation of China (No. 61377064), the Beijing Natural Science Foundation (No. 3131001) and the State Key Laboratory of NBC Protection for Civilian (No. SKLNBC2014-11).
Uniform large-area and high-performance surface enhanced Raman scattering (SERS) substrates were prepared for the first time by using a simple three-step method. The method contains sputtering deposition of an AuAg alloy layer on the glass sheet and subsequent dip-coating of a sol-gel copolymer-templated silica film on the alloy layer and finally thermal treatment of the double-layer coated glass sheet in air at 450 ℃ for several hours. The thermal treatment leads to formation of the mesoporous silica (MS) film. The scanning electron microscope images show that the top layer of MS has the open-pore structure that facilitates rapid diffusion of small molecules into the film. The energy dispersive X-ray (EDX) spectroscopy analyses indicate that the thermal treatment of the substrate results in the loss of Ag atoms in the AuAg alloy film accompanied with the nanostructure formation in the film. The systematic measurements of SERS spectra for Nile blue (NB) and Crystal violet (CV) demonstrate that the insertion of a 20-nm-thick gold layer between the glass sheet and a 50-nm-thick AuAg alloy film can effectively increase the SERS enhancement factor of the substrate. Dependence of the SERS signal on the substrate immersion time was investigated with an aqueous solution of 50 nmol·L-1 CV, and the findings indicate that the intensity of SERS signal increases with increasing the immersion time up to 30 min after which the signal becomes stable. The SERS signal intensity detected 15 min after immersion is 85% of its stable value. The position of each peak in the SERS spectrum for the adsorbed CV molecules is perfectly identical to that in the conventional Raman spectrum obtained with the aqueous CV solution, giving a sign that the MS film enables to prevent the metal from interfering the positions of SERS peaks. The experimental results demonstrate that such novel SERS substrates have the detection limit of 1 nmol·L-1 NB.
Liu Delong , Lu Danfeng , Zhao Qiao , Chen Chen , Qi Zhimei . Large-area High-performance SERS Substrates Prepared with a Combination of Mesoporous Silica Film and AuAg Alloy film[J]. Acta Chimica Sinica, 2015 , 73(1) : 41 -46 . DOI: 10.6023/A14100734
[1] Han, X. X.; Ozaki, Y.; Zhao, B. Trac-trend Anal. Chem. 2012, 38, 67.
[2] Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1988, 27, 241.
[3] Guo, H. Y.; Lu, L. H.; Wu, C.; Pan, J. G.; Hu, J. W. Acta Chim. Sinica 2009, 67, 1603. (郭红燕, 卢玲慧, 吴超, 潘建高, 胡家文, 化学学报, 2009, 67, 1603.)
[4] Zhao, Q.; Lu, D. F.; Liu, D. L.; Chen, C.; Hu, D. B.; Qi, Z. M. Acta Phys.-Chim. Sin. 2014, 30, 1201. (赵乔, 逯丹凤, 刘德龙, 陈晨, 胡德波, 祁志美, 物理化学学报, 2014, 30, 1201.)
[5] Huang, Y. F.; Wu, D. Y.; Zhu, H. P.; Zhao, L. B.; Liu, G. K.; Ren, B.; Tian, Z. Q. Phys. Chem. Chem. Phys. 2014, 14, 8458.
[6] Cao, X. W.; Qian, Q. Q.; Deng, W. Q.; Zhang, T. T. Acta Chim. Sinica 2010, 68, 107. (曹晓卫, 钱庆庆, 邓卫芹, 张婷婷, 化学学报, 2010, 68, 107.)
[7] Upadhyayula, V. K. K. Anal. Chim. Acta 2012, 715, 1.
[8] Li, H. B.; Xu, S. P.; Liu, Y.; Fu, C. C.; Xuan, X. Y.; Wang, X. N. Wang, H. L.; Zhou, J.; Xu, W. Q. Sci. China-Chem. 2013, 43, 1669. (李海波, 徐抒平, 刘钰, 付翠翠, 宣旭阳, 王馨楠, 王海龙, 周 吉, 徐蔚青, 中国科学: 化学, 2013, 43, 1669.)
[9] Giergiel, J.; Reed, C. E.; Hemminger, J. C.; Ushioda, S. J. Phys. Chem. 1988, 92, 5357.
[10] Le Ru, E. C.; Etchegoin, P. G. Annu. Rev. Phys. Chem. 2012, 63, 65.
[11] Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. J. Phys. Chem. B 2003, 107, 9964.
[12] Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667.
[13] Xu, H. X.; Aizpurua, J.; Kall, M.; Apell, P. Phys. Rev. E 2000, 62, 4318.
[14] Yamazoe, S.; Naya, M.; Shiota, M.; Morikawa, T.; Kubo, A.; Tani, T.; Hishiki, T.; Horiuchi, T.; Suematsu, M.; Kajimura, M. ACS Nano 2014, 8, 5622.
[15] Singh, J. P.; Chu, H. Y.; Abell, J.; Tripp, R. A.; Zhao, Y. P. Nanoscale 2012, 4, 3410.
[16] Chung, A. J.; Huh, Y. S.; Erickson, D. Nanoscale 2011, 3, 2903.
[17] Das, G.; Patra, N.; Gopalakrishnan, A.; Zaccaria, R. P.; Toma, A.; Thorat, S.; Di, F. E.; Diaspro, A.; Salerno, M. Analyst 2012, 137, 1785.
[18] Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhu, C. H.; Zhang, Z. J. Raman. Spectrosc. 2013, 44, 240.
[19] Qi, J. W.; Li, Y. D.; Yang, M.; Wu, Q.; Chen, Z. Q.; Wang, W. D.; Lu, W. Q.; Yu, X. Y.; Xu, J. J.; Sun, Q. Nanoscale Res. Lett., 2013, 8, 437.
[20] Liu, D. L.; Zhao, Q.; Lu, D. F.; Qi, Z. M. Chem. J. Chin. Univ. 2014, 35, 2207. (刘德龙, 赵乔, 逯丹凤, 祁志美, 高等学校化学学报, 2014, 35, 2207.)
[21] Liu, H. W.; Zhang, L.; Lang, X. Y.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W. Sci. Rep. 2011, 1, 1.
[22] Peng, C. X.; Wu, G. Y.; Yu, Y. X.; Cheng, X. Acta Chim. Sinica 2011, 69, 659. (彭迟香, 吴国友, 余煜玺, 程璇, 化学学报, 2011, 69, 659.)
[23] Liu, Q.; Zhang, Z.; Qi, Z. M. Chin. J. Anal. Chem. 2012, 40, 10754. (柳倩, 张喆, 祁志美, 分析化学, 2012, 40, 10754.)
[24] Zhao, Q.; Lu, D. F.; Chen, C.; Qi, Z. M. Acta Phys.-Chim. Sin. 2014, 30, 2335. (赵乔, 逯丹凤, 陈晨, 祁志美, 物理化学学报, 2014, 30, 2335.)
[25] Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X.; Ren, B.; Tian, Z. Q. Nat. Commun. 2011, 2, 305.
[26] Cao, X. W.; Wang, H. H.; Zhang, Z. R. J. Light Scatt. 2006, 18, 36.
[27] Bukaluk, A. Surf. Interface Anal. 1983, 5, 20.
/
| 〈 |
|
〉 |