Review

Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency

  • Guo Xudong ,
  • Niu Guangda ,
  • Wang Liduo
Expand
  • Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2014-10-04

  Online published: 2014-12-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 51273104).

Abstract

Perovskite solar cells have recently achieved photo-electric conversion efficiency over 19% showing a promising future for a cost-competitive potovoltaic technology. However, the study of perovskite solar cells' stability didn't catch up with the step of efficiency's process, which is the key issue for commercial application of perovskite solar cells. This review discussed the basic issues of the perovskite solar cells' stability under different circumstances, such as oxygen and moisture, UV light, solution process (solvents, solutes, additives), and temperature etc. and summarized how to control the perovskite solar cells' stability under the conditions above. The purpose is to provide a better understanding about perovskite solar cells'stability and the methods to increase the stability of perovskite solar cells under different circumstances.

Cite this article

Guo Xudong , Niu Guangda , Wang Liduo . Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency[J]. Acta Chimica Sinica, 2015 , 73(3) : 211 -218 . DOI: 10.6023/A14100687

References

[1] Park, N. G. J. Phys. Chem. Lett. 2013, 4, 2423.
[2] Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.
[3] Grätzel, M. Nat. Mater. 2014, 13, 838.
[4] Science 2013, 342, 1438.
[5] http: //www. nrel. gov/ncpv/images/efficiency_chart. jpg.
[6] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
[7] Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316.
[8] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[9] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
[10] Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. J. Mater. Chem. A 2014, 2, 705.
[11] Ma, B.; Gao, R.; Wang, L.; Luo, F.; Zhan, C.; Li, J.; Qiu, Y. J. Photochem. Photobiol. A: Chem. 2009, 202, 33.
[12] Li, W.; Li, J.; Wang, L.; Niu, G.; Gao, R.; Qiu, Y. J. Mater. Chem. A 2013, 1, 11735.
[13] Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14, 2584.
[14] Cheng, Z.; Lin, J. CrystEngComm 2010, 12, 2646.
[15] Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.
[16] Mitzi, D. B. Prog. Inorg. Chem. 2007, 48, 1.
[17] Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. Nano Lett. 2014, 14, 3608.
[18] Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16548.
[19] Yang, Z.-S.; Yang, L.-G.; Wu, G.; Wang, M.; Chen, H.-Z. Acta Chim. Sinica 2011, 69, 627. (杨志胜, 杨立功, 吴刚, 汪茫, 陈红征, 化学学报, 2011, 69, 627.)
[20] Im, J. H.; Chung, J.; Kim, S. J.; Park, N. G. Nanoscale Res. Lett. 2012, 7, 353.
[21] Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. Adv. Mater. 2014, 26, 4991.
[22] Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 3151.
[23] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[24] Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485.
[25] Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.
[26] Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T. J. Phys. Chem. Lett. 2014, 5, 1004.
[27] Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G. Nat. Photon. 2014, 8, 489.
[28] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[29] Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sánchez, R. S.; Otero, L. A.; Mora-Sero, I. J. Phys. Chem. Lett. 2014, 5, 1628.
[30] Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. Chem. Mater. 2013, 25, 4613.
[31] Edri, E.; Kirmayer, S.; Kulbak, M.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2014, 5, 429.
[32] Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2013, 4, 897.
[33] Nagane, S.; Bansode, U.; Game, O.; Chhatre, S.; Ogale, S. Chem. Commun. 2014, 50, 9741.
[34] Swainson, I.; Tucker, M.; Wilson, D.; Winkler, B.; Milman, V. Chem. Mater. 2007, 19, 2401.
[35] Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M. Chem. Mater. 2014, 26, 6160.
[36] Pisoni, A.; Jacimovic, J.; Bariši?, O. S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E. J. Phys. Chem. Lett. 2014, 5, 2488.
[37] Fang, Y.; Wang, X.; Wang, Q.; Huang, J.; Wu, T. Phys. Status Solidi A 2014, 211, 2809.
[38] Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. Energy Environ. Sci. 2014, 7, 2963.
[39] Shi, J.; Dong, J.; Lv, S.; Xu, Y.; Zhu, L.; Xiao, J.; Xu, X.; Wu, H.; Li, D.; Luo, Y.; Meng, Q. Appl. Phys. Lett. 2014, 104, 063901.
[40] Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; Han, H. Science 2014, 345, 295.
[41] Li, W.; Dong, H.; Wang, L.; Li, N.; Guo, X.; Li, J.; Qiu, Y. J. Mater. Chem. A 2014, 2, 13587.
[42] Zhang, H.; Shi, Y.; Yan, F.; Wang, L.; Wang, K.; Xing, Y.; Dong, Q.; Ma, T. Chem. Commun. 2014, 50, 5020.
[43] Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li G.; Yang, Y. J. Am. Chem. Soc. 2013, 136, 622.
[44] Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. J. Phys. Chem. Lett. 2014, 5, 1511.
[45] Dualeh, A.; Moehl, T.; Tétreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. ACS Nano 2013, 8, 362.
[46] Zhao, Y.; Zhu, K. Chem. Commun. 2014, 50, 1605.
[47] Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C 2000, 1, 1.
[48] Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4, 2885.
[49] Pathak, S. K.; Abate, A.; Leijtens, T.; Hollman, D. J.; Teuscher, J.; Pazos, L.; Docampo, P.; Steiner, U.; Snaith, H. J. Adv. Energy Mater. 2014, 4, 1301667.
[50] Schwanitz, K.; Weiler, U.; Hunger, R.; Mayer, T.; Jaegermann, W. J. Phys. Chem. C 2007, 111, 849.
[51] Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. J. Phys. Chem. C 2014, 118, 16995.
[52] Chander, N.; Khan, A.; Chandrasekhar, P.; Thouti, E.; Swami, S. K.; Dutta, V.; Komarala, V. K. Appl. Phys. Lett. 2014, 105, 033904.
[53] Strange, P.; Svane, A.; Temmerman, W.; Szotek, Z.; Winter, H. Nature 1999, 399, 756.
[54] Wei, J.; Zhao, Q.; Li, H.; Shi, C.-L.; Tian, J.-J.; Cao, G.-Z.; Yu, D.-P. Sci. Sin. Tech. 2014, 44, 801. (魏静, 赵清, 李恒, 施成龙, 田建军, 曹国忠, 俞大鹏, 中国科学技术科学, 2014, 44, 801.)
[55] Zhang, W.-H.; Peng, X.-C.; Feng, X.-D. Electronic Components Mater. 2014, 33, 7. (张玮皓, 彭晓晨, 冯晓东, 电子元件与材料, 2014, 33, 7.)

Outlines

/