Article

Influence of Structure and Morphology of Perovskite Films on the Performance of Perovskite Solar Cells

  • Shao Zhipeng ,
  • Pan Xu ,
  • Zhang Xuhui ,
  • Ye Jiajiu ,
  • Zhu Liangzheng ,
  • Li Yi ,
  • Ma Yanmei ,
  • Huang Yang ,
  • Zhu Jun ,
  • Hu Linhua ,
  • Kong Fantai ,
  • Dai Songyuan
Expand
  • a Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031;
    b Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206

Received date: 2014-10-17

  Online published: 2014-12-25

Supported by

Project supported by the National Basic Research Program of China (No. 2011CBA00700), the National High Technology Research and Development Program of China (No. 2011AA050510), and the National Natural Science Foundation of China (Nos. 21103197, 21273242).

Abstract

Perovskite solar cells based on the inorganic/organic hybrid perovskite have attracted increasing attention over the past 3 years. Many studies have been done in this area. Controling the morphology of the perovskite film is an effective way to improve the photoelectric conversion efficiency of the devices. In our reserch, we studied the influence of structure and morphology of perovskite films on the performance of the organic-inorganic hybrid perovskite solar cells which prepared by a sequential deposition method. Mesoporous TiO2 scaffold were introduced as electron collecting layer. Lead iodide (PbI2) was then spin cast on the TiO2 scaffold. The PbI2 subsequently transformed into the perovskite (CH3NH3PbI3) by dipping the TiO2/PbI2 film into a solution of CH3NH3I. We studied the difference between the PbI2 film with or without drying under room temperature after spin-coating. Through drying under room temperature, larger pores formed in the PbI2 film. While without drying under room temperature, smaller and shallower pores formed in the PbI2 film. The results show that larger pores in PbI2 film leads to more complete transformation of PbI2 to CH3NH3PbI3 and larger CH3NH3PbI3 particles. CH3NH3PbI3 films were prepared with three different processes: (a) direct dipping the PbI2 film with smaller pores into the CH3NH3I solution; (b) direct dipping the PbI2 with larger pores into the CH3NH3I solution; (c) dipping the PbI2 with larger pores into the CH3NH3I solution after pre-wetting.The resulting CH3NH3PbI3 films were studied with SEM, UV-vis absorption spectrum and XRD. The particles size of the CH3NH3PbI3 are 150, 250 and 350 nm for process (a), (b) and (c) respectively. CH3NH3PbI3 films fabricated through process (a) show insufficient absorption due to the insufficient transformation of the PbI2. The pre-wetting procedure leads to slower reaction result in larger CH3NH3PbI3 particle size. Devices with proper size of CH3NH3PbI3 particles show the highest photoelectric conversion efficiency. An efficiency of 13.5% was achieved with a Jsc of 17.8 mA/cm2, a Voc of 1.05 V and a FF of 72.5%.

Cite this article

Shao Zhipeng , Pan Xu , Zhang Xuhui , Ye Jiajiu , Zhu Liangzheng , Li Yi , Ma Yanmei , Huang Yang , Zhu Jun , Hu Linhua , Kong Fantai , Dai Songyuan . Influence of Structure and Morphology of Perovskite Films on the Performance of Perovskite Solar Cells[J]. Acta Chimica Sinica, 2015 , 73(3) : 267 -271 . DOI: 10.6023/A14100721

References

[1] (a) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643;
(b) Gratzel, M. Nat. Mater. 2014, 13, 838.
[2] (a) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050;
(b) Wu, C. G.; Chiang, C. H.; Tseng, Z. L. J. Mater. Chem. A 2014, 2, 15897;
(c) Qin, P.; Paek, S.; Dar, M. I.; Pellet, N.; Ko, J.; Gratzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2014, 136, 8516;
(d) Cai, B.; Xing, Y.; Yang, Z.; Zhang, W. H.; Qiu, J. Energy Environ. Sci. 2013, 6, 1480.
[3] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
[4] Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623.
[5] (a) Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Chen, H. Z. Acta Chim. Sinica 2011, 69, 627 (杨志胜, 杨立功, 吴刚, 汪茫, 陈红征, 化学学报, 2011, 69, 627);
(b) Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Tang, B. Z.; Chen, H. Z. Acta Chim. Sinica 2008, 66, 1611 (杨志胜, 杨立功, 吴刚, 汪茫, 唐本忠, 陈红征, 化学学报, 2008, 66, 1611).
[6] (a) Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Nat. Photonics 2014, 8, 128;
(b) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Graetzel, M. J. Am. Chem. Soc. 2012, 134, 17396.
[7] (a) Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653;
(b) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341;
(c) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Science 2013, 342, 344.
[8] Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7, 399.
[9] (a) Kim, H. S.; Lee, C.-R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry Baker, R.; Yum, J. H.; Moser, J. E.; Graetzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591;
(b) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622;
(c) He, M.; Zheng, D.; Wang, M.; Lin, C.; Lin, Z. J. Mater. Chem. A 2014, 2, 5994.
[10] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry Baker, R.; Gao, P.; Nazeeruddin, M. K.; Graetzel, M. Nature 2013, 499, 316.
[11] Im, J. H.; Jang, I. H.; Pellet, N.; Grätzel, M.; Park, N. G. Nat. Nano 2014, 9, 927.
[12] Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. Angew. Chem., Int. Ed. 2014, 126, 1.
[13] (a) Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 1142;
(b) Wang, J. T.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; Nicholas, R. J. Nano Lett. 2013, 14, 724.
[14] (a) Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; Yang, S. Angew. Chem., Int. Ed. 2014, 126, 1;
(b) Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, E. W.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P.; Guo, T. F.; Wen, T. C. Sci. Rep. 2014, 4, 4756;
(c) Wang, K. C.; Shen, P. S.; Li, M. H.; Chen, S.; Lin, M. W.; Chen, P.; Guo, T. F. ACS Appl. Mater. Interfaces 2014, 6, 11851.
[15] (a) Wang, Q.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2359;
(b) Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2642;
(c) Liu, D.; Kelly, T. L. Nat. Photonics 2013, 8, 133;
(d) Ryu, S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, S.; Seo, J. W.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2614.
[16] Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
[17] Shi, J.; Luo, Y.; Wei, H.; Luo, J.; Dong, J.; Lv, S.; Xiao, J.; Xu, Y.; Zhu, L.; Xu, X.; Wu, H.; Li, D.; Meng, Q. ACS Appl. Mater. Interfaces 2014, 6, 9711.
[18] Chen, Q.; Zhou, H.; Song, T. B.; Luo, S.; Hong, Z.; Duan, H. S.; Dou, L.; Liu, Y.; Yang, Y. Nano Lett. 2014, 14, 4158.
[19] Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J. Adv. Mater. 2006, 18, 572.
[20] Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.
21] Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Gratzel, M.; Seok, S. I. J. Am. Chem. Soc. 2013, 135, 19087.

Outlines

/