Theoretical Investigation on the Adsorption of DNA Bases on B-doped SWCNT Surface
Received date: 2014-10-21
Online published: 2015-01-12
Supported by
Project supported by the Foundation of Sichuan Province (No. 2014JY0099) and Department of Education of Sichuan Province(Nos. 13ZA0150, 14ZB0028).
A comparative study was conducted to assess the adsorption and characteristics of the four types of DNA bases, A, T, C, and G, on pristine and B-doped SWCNTs by density functional theory calculations with LDA (PWC) method. The configurations of the best sites, the adsorption energies in the best sites and the electronic structures of stable adsorption models, including DOS, PDOS, electron density map, mulliken charge properties of DNA bases and B atom before and after adsorption on pristine and B-doped SWCNTs have been investigated. And the frontier orbital energy gap and charge transfer of DNA bases adsorption on pristine and B-doped SWCNTs have been also investigated. The results indicated that the best adsorption site of DNA base adsorption on pristine and B-doped SWCNTs was on the top of carbon and B atoms. The bases A, G were adsorbed on pure SWCNT by weak interaction, the bases T, C were adsorbed on pure SWCNT by strong chemical interaction. The bases A, T, C, G were adsorbed on B-doped SWCNT by chemical interaction. After B doping, the structure of the SWCNT was not distorted, however, the local electronic structure was modified. The frontier orbital energy gap of SWCNT could be effectively reduced by B doping. Moreover, the electronic reactivity with the DNA bases of SWCNT were enhanced by B doping. The DNA bases on the surface of B-doped SWCNT could be modified by Chemical adsorption. This method for the modification of DNA bases on B-doped SWCNT surface has great potential for the construction of DNA biosensors of biorecognition interfaces.
Key words: SWCNT; B-Doping; DNA biosensors; surface modification; density functional theory
Li Laicai , Zhang Ming , Mao Shuang , Yang Chun , Tian Anmin . Theoretical Investigation on the Adsorption of DNA Bases on B-doped SWCNT Surface[J]. Acta Chimica Sinica, 2015 , 73(2) : 143 -150 . DOI: 10.6023/A14100729
[1] Wang, J. Biosens. Bioelectron. 2006, 10, 1887.
[2] Gooding, J. J. Electroanalysis 2002, 17, 1149.
[3] Zhang, J.-J.; Dai, P.-Q.; Li, C.; Li, N.-W.; Cheng, G.-F.; He, P.-G.; Fang, Y.-Z. Acta Chim. Sinica 2014, 72, 1029. (张佳佳, 代佩卿, 李超, 李南忘, 程圭芳, 何品刚, 方禹之, 化学学报, 2014, 72, 1029.)
[4] Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. Nature 2009, 460, 250.
[5] Dong, X.-Y.; Zhao, W.-W.; Sun, G.-B.; Xu, J.-J.; Chen, H.-Y. Acta Chim. Sinica 2012, 70, 1457. (董晓娅, 赵伟伟, 孙国宝, 徐静娟, 陈洪渊, 化学学报, 2012, 70, 1457.)
[6] Vaidya, A. A. Langmuir 2004, 20, 11100.
[7] Meric, B.; Kerman, K.; Ozkan, D.; Kara, P. Electroanalysis 2002, 18. 1245.
[8] Kerman, K.; Morita, Y.; Takamura, Y.; Ozsoz, M.; Tamiya, E. Electroanalysis 2004, 16, 1667.
[9] Gooding, J. J. Electroanalysis 2002, 14, 1149.
[10] Watterson, J.; Piunno, P. A. E.; Krull, U. J. Anal. Chim. Acta 2002, 469, 115.
[11] Staii, C.; Johnson, A. T.; Chen, M.; Gelperin, A. Nano Lett. 2005, 5, 1774.
[12] Wang, J. Anal. Chim. Acta 2003, 500, 247.
[13] Wang, J.; Xu, D. K.; Erdem, A.; Polsky, R.; Salazar, M. A. Talanta 2002, 56, 931.
[14] Chen, C. L.; Yang, C. F.; Agarwal, V.; Kim, T.; Sonkusale, S.; Busnaina, A.; Chen, M.; Dokmeci, M. R. Nanotechnology 2010, 21, 095504.
[15] Khabashesku, V. N.; Margrave, J. L.; Barrera, E. V. Diamond Relat. Mater 2004, 14, 859.
[16] Martin, W.; Zhu, W. S.; Krilov, G. J. Phys. Chem. B 2008, 112, 16076.
[17] Roxbury, D.; Jagota, A.; Mittal, J. J. Am. Chem. Soc. 2011, 133, 13545.
[18] Ma, Y. F.; Ali, S. R.; Dodoo, A. S.; He, H. X. J. Phys. Chem. B 2006, 110, 16359.
[19] Liu, S.; Guo, X. F. NPG Asia Mater. 2012, 4, 1.
[20] Heng, L. Y.; Chou, A.; Yu, J.; Chen, Y.; Gooding, J. J. Electrochem. Commun. 2005, 7, 1457.
[21] Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G. Chem. Commun. 2005, 829.
[22] Li, S. N.; He, P. G.; Dong, J. H.; Guo, Z. X.; Dai, L. M. J. Am. Chem. Soc. 2005, 127, 14.
[23] Kim, J. H.; Kataoka, M.; Jung, Y. C.; Fujisawa, K.; Hayashi, T.; Kim, Y. A.; Endo, M. ACS Appl. Mater. Interfaces 2013, 5, 4150.
[24] Jana, D.; Sun, C. L.; Chen, L. C.; Chen, K. H. Prog. Mater. Sci. 2013, 58, 565.
[25] Gowtham, S.; Scheicher, R. H.; Pandey, R.; Karna, S. P.; Ahuja, R. Nanotechnology 2008, 19, 125701.
[26] Johnson, R. R.; Johnson, A. T.; Klein, M. L. Small 2010, 6, 31.
[27] Cao, Z.-X. Lin, M.-L. Chinese Chemical Society 27th Annual Conference Proceedings 14-9-069, 2010. (曹泽星, 林铭炼, 中国化学会第27届学术年会论文集, 2010, 14-9-069.)
[28] Bezanilla, A. L. J. Phys. Chem. C 2014, 118, 1472.
[29] Xu, H.; Xiao, J.; Ouyang, F.-P. Acta Phys. Sin. 2010, 59, 4186. (徐慧, 肖金, 欧阳方平, 物理学报, 2010, 59, 4186.)
[30] Song, C.; Xia, Y. Y.; Zhao, M. W.; Liu, X. D.; Huang, B. D.; Li, F.; Ji, Y. J. Phys. Rev. B 2005, 72, 165430.
[31] Katz, E.; Willner, I. ChemPhysChem 2004, 5, 1084.
[32] Khare, B. N.; Wilhite, P.; Quinn, R. C.; Chen, B.; Schingler, R. H.; Tran, B. J.; Imanaka, H.; So, C. R.; Bauschlicher, C. W.; Meyyappan, M. J. Phys. Chem. B 2004, 108, 8166.
[33] Srivastva, D.; Menon, M.; Cho, K. Phys. Rev. Lett. 1999, 83, 2973.
[34] Wang, R.-X.; Zhang, D.–J.; Wu, J.; Liu, C.-B. Acta Chim. Sinica 2007, 65, 107. (王若曦, 张冬菊, 武剑, 刘成卜, 化学学报, 2007, 65, 107.)
[35] Zhang, Y. M.; Zhang, D. J.; Liu, C. B. J. Phys. Chem. B 2006, 110, 4671.
[36] Zhao, Q.; Nardelli, M. B.; Liu, W.; Bernholc, J. Nano Lett. 2005, 5, 847.
[37] Zhang, Y.; Frankin, N. W.; Chen, R. J.; Dai, H. Chem. Phys. Lett. 2000, 331, 35.
[38] Srivastva, D.; Menon, M.; Cho, K. Phys. Rev. Lett. 1999, 83, 2973.
[39] Wang, R.-X.; Zhang, D.-J.; Zhu, R.-X.; Liu, C.-B. Sci. Sinica Chim. B 2013, 43, 63. (王若曦, 张冬菊, 朱荣秀, 刘成卜, 中国科学B, 化学, 2013, 43, 63.)
[40] Zhang, J.-D.; Yang, C.; Chen, Y.-T.; Zhang, B.-X.; Shao, W.-Y. Acta Phys. Sin. 2011, 60, 106121. (张建东, 杨春, 陈元涛, 张变霞, 邵文英, 物理学报, 2011, 60, 106121.)
/
〈 |
|
〉 |