Article

Poly(L-glutamic acid) Microsphere: Preparation and Application in Oral Drug Controlled Release

  • Zhao Li ,
  • Ding Jianxun ,
  • Xiao Chunsheng ,
  • Chen Xuesi ,
  • Gai Guangqing ,
  • Wang Liyan
Expand
  • a Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022;
    b Laboratory of Building Energy-Saving Technology Engineering, Jilin Jianzhu University, Changchun 130118;
    c College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118

Received date: 2014-11-09

  Online published: 2015-01-06

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51403075, 51303174, 51203153, 51390484, 51233004, 51321062) and the Scientific Development Program of Jilin Province (No. 20140520050JH).

Abstract

Poly(L-glutamic acid) (PLG) and its derivatives, which are biodegradable and biocompatible, are one kind of the most widely investigated synthetic polypeptides as biomedical materials benefited from their pH-responsive property (pKa~4.1) and modifiable side carboxyl group. In this work, PLG was synthesized via a two-step procedure. Poly(γ-benzyl-L-glutamate) (PBLG) was first synthesized by the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA) using n-hexylamine as initiator, and then PLG was prepared by the deprotection of benzyl groups in PBLG. PLG microsphere was prepared by the oil-in-oil (O/O) anhydrous emulsion method utilizing N,N-dimetylformamide as an inner oil phase and corn oil as an outer oil phase. Rifampicin, a model drug, was loaded into the PLG microsphere, and the drug loading capacity and entrapment efficiency were revealed. The scanning electron microscopy micrograph indicated that the drug-loaded microsphere exhibited spherical morphology with narrow size distribution and average diameter at about 9.0 μm. To investigate the application of PLG microsphere in oral drug delivery (especially for enteric-coated drugs), the in vitro rifampicin release experiments in simulated gastric or intestinal fluid were performed. In vitro release results revealed that the release of rifampicin from microsphere was highly dependent on pH. In detail, less amount of rifampicin was released in simulated gastric fluid, while the quicker release of rifampicin occurred in simulated intestinal fluid. It was because that the deprotonation of carboxyl groups in PLG caused the loose, expansion, and even disintegration of PLG microsphere in simulated intestinal fluid. Moreover, the morphology of microsphere in simulated gastric fluid was different from that in simulated intestinal fluid, which further confirmed the pH-sensitive property of microsphere. Additionally, in vitro methyl thiazolyl tetrazolium assays demonstrated that the PLG microsphere was biocompatible. Therefore, the biocompatible PLG microsphere with the intelligent pH-triggered drug release should be promising for application in oral drug delivery.

Cite this article

Zhao Li , Ding Jianxun , Xiao Chunsheng , Chen Xuesi , Gai Guangqing , Wang Liyan . Poly(L-glutamic acid) Microsphere: Preparation and Application in Oral Drug Controlled Release[J]. Acta Chimica Sinica, 2015 , 73(1) : 60 -65 . DOI: 10.6023/A14110767

References

[1] Alessandra, M.; Lucia, Z.; Maria, D. D. C.; Anastasia, F.; Andrea, G. Adv. Drug Delivery Rev. 2012, 64, 540.
[2] Lee, W. A.; Narog, B. A.; Patapoff, T. W.; Wang, Y. J. J. Pharm. Sci. 1991, 80,725.
[3] Brain, J. D. Diabetes Technol. Ther. 2007, 9, S4.
[4] Alabraba, V.; Farnsworth, A.; Leigh, R.; Dodson, P.; Gough, S. C. L.; Smyth, T. Diabetes Technol. Ther. 2009, 11, 427.
[5] Chen, H.; Zhu, H.; Zheng, J.; Mou. D.; Wan, J.; Zhang, J.; Shi, T.; Zhao, Y.; Xu, H.; Yang, X. J. Controlled Release 2009, 139, 63.
[6] Thomas, B. J.; Finnin, B. C. Drug Discovery Today 2004, 9, 697.
[7] Molokhia, S. A.; Thomas, S. C.; Garff, K. J.; Mandell, K. J.; Wirostko, B. M. J. Ocul. Pharmacol. Th. 2013, 29, 92.
[8] Wang, D.; Xuan, H. X.; Lin, Q. S. Pharm. Biotechnol. 2000, 7, 57. (王瓞, 宣海星, 林其谁, 药物生物技术, 2000, 7, 57.)
[9] Iyer, H.; Khedkar, A.; Verma, M. Diabetes Obes. Metab. 2010, 12, 179.
[10] Mukhopadhyay, P.; Mishra, R.; Rana, D.; Kundu, P. P. Prog. Polym. Sci. 2012, 37, 1457.
[11] Yang, W. H.; Yu, S. Y.; Chen, S.; Liu, Y. Z.; Shao, Z. Z; Chen, X. Acta Chim. Sinica 2014, 72, 1164. (杨文华, 俞淑英, 陈胜, 刘也卓, 邵正中, 陈新, 化学学报, 2014, 72, 1164.)
[12] Jia, X. K.; Yin, J. J.; He, D. G.; He, X. X.; Wang, K. M.; Chen, M.; Li, Y. H. J. Biomed. Nanotechnol. 2013, 9, 2063.
[13] Osada, K.; Christie, R. J.; Kataoka, K. J. R. Soc. Interface 2009, 6, S325.
[14] Deming, T. J. Adv. Drug Delivery Rev. 2002, 54, 1145.
[15] Ding, J. X.; Xiao, C. S.; Tang, Z. H.; Zhuang, X. L.; Chen, X. S. Macromol. Biosci. 2011, 11, 192.
[16] Couffin-Hoarau, A. C.; Boustta, M.; Vert, M. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 3475.
[17] Kohn, J.; Langer, R. J. Am. Chem. Soc. 1987, 109, 817.
[18] Xu, X.; Wu, G. L.; Zhang, J.; Wang, Y. N.; Fan, Y. H.; Ma, J. B. Acta Chim. Sinica 2008, 66, 1102. (徐旭, 伍国琳, 张洁, 王亦农, 范云鸽, 马建标, 化学学报, 2008, 66, 1102.)
[19] Chen, L., Tian, H. Y.; Chen. J.; Chen, X. S.; Huang, Y. B.; Jing, X. B. J. Gene Med. 2010, 12, 64.
[20] Li, C. Adv. Drug Delivery Rev. 2002, 54, 695.
[21] Zhao, L.; Ding, J. X.; Xiao, C. S.; He, P.; Tang, Z. H.; Pang, X.; Zhuang, X. L.; Chen, X. S. J. Mater. Chem. 2012, 22, 12319.
[22] He, N.; Sun, H. C.; Xu, H. X.; Shao, Z. Z. Chem. J. Chin. Univ. 2014, 35, 2019. (何宁, 孙贺春, 徐欢喜, 邵张章, 高等学校化学学报, 2014, 35, 2019.)
[23] Zhang, Z.; Chen, L.; Deng, M. X.; Bai, Y. Y.; Chen, X. S.; Jing, X. B. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2941.
[24] Han, J. D.; Ding, J. X.; Wang, Z. C.; Yan, S. F.; Zhuang, X. L.; Chen, X. S.; Yin, J. B. Sci. China, Chem. 2013, 56, 729.
[25] Leach, W. T.; Simpson, D. T.; Val, T. N.; Anuta, E. C.; Yu, Z. S.; Williams, R. O.; Johnston, K. P. J. Pharm. Sci. 2005, 94, 56.
[26] Sah, H. K. J. Pharm. Sci. 1997, 86, 1315.

Outlines

/