Article

Theoretical Study of Energy Gaps for Naphthalimide-based Charge Transfer Compounds

  • Wu Youxiong ,
  • Ren Hongyang ,
  • Wu Yifang ,
  • Wang Bingxi
Expand
  • a College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116;
    b Department of Chemistry and Chemical Engineering, Heze University, Heze 274015

Received date: 2014-11-19

  Online published: 2014-12-30

Supported by

Project supported by Science and Technology Development Foundation of Fuzhou University (No. 2010XQ02).

Abstract

Thermally activated delayed fluorescence (TADF) materials are promising for the next generation of organic light-emitting diodes. To realize reverse intersystem crossing (RISC) effectively for TADF molecules requires basically small energy gap (ΔEST) between the lowest singlet (S1) and triplet (T1) excited states. In this work, 1,8-naphthalimide was selected as a fixed acceptor (A) because of its large rigid conjugate structure with a high radiative decay rate. Twelve naphthalimide-based intramolecular charge transfer (ICT) compounds were constructed by the conjunction of naphthalimide moiety with each of donors (D) including 9,9-dimethyl-9,10-dihydroacridine, phenoxazine, etc. Their energy gaps were calculated with the Gaussian 09 package at TD-DFT level using the optimal Hartree-Fock exchange method reported by Huang Shuping recently. The results show that D-A structure of naphthalimide-based ICT compounds has smaller ΔEST and longer starting fluorescence emission wavelengths (λ) than those for corresponding D-phenyl-A type. However, strong electron donor like 9-(9H-carbazol-3-yl)-9H-carbazole (DCZ) seems to have no significant effect on ΔEST and λ at high CT amount. To achieve small ΔEST of these naphthalimide-based ICT compounds, increasing the twisting angle between D and A, together with enhancing electron donating ability of D is found to be a practical strategy to stabilize the energy of the lowest locally-excited triplet state (3LE) and substantially lower the energy of its lowest CT triplet excited state (3CT). As a result, 4-(9,9-dimethyl-9,10-dihydroacridine)-N-phenyl-1,8-naphthalimide (4b) and 4-(phenoxazine)-N-phenyl-1,8-naphthalimide (5b) show small ΔEST of 0.01 eV and 0.02 eV, respectively. Their λ and oscillator strengths of vertical absorption from ground state (S0) to S1 are 575 nm and 0.0002 for 4b, while 621 nm and 0.0025 for 5b, respectively. In addition, the λ of compound 5b obtained from its photoluminescence curve is 600 nm, which consists with the computed one with an error of 0.07 eV. Therefore, compounds 4b and 5b can be expected to be potential reddish-orange and red TADF emitters.

Cite this article

Wu Youxiong , Ren Hongyang , Wu Yifang , Wang Bingxi . Theoretical Study of Energy Gaps for Naphthalimide-based Charge Transfer Compounds[J]. Acta Chimica Sinica, 2015 , 73(1) : 53 -59 . DOI: 10.6023/A14110795

References

[1] Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Nat. Photonics 2012, 6, 253.
[2] Zhou, L.; Deng, R.-P.; Hao, Z.-M.; Song, M.-X.; Zhang, H.-J. Acta Chim. Sinica 2012, 70, 1904. (周亮, 邓瑞平, 郝召民, 宋明星, 张洪杰, 化学学报, 2012, 70, 1904.)
[3] Kim, K.-H.; Moon, C.-K.; Lee, J.-H.; Kim, S.-Y.; Kim, J.-J. Adv. Mater. 2014, 26, 3844.
[4] Zhang, Q.-S.; Li, J.; Shizu, K.; Huang, S.-P.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706.
[5] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[6] Wang, H.; Xie, L.-S.; Peng, Q.; Meng, L.-Q.; Wang, Y.; Yi, Y.-P.; Wang, P.-F. Adv. Mater. 2014, 26, 5198.
[7] Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Chem. Commun. 2012, 48, 11392.
[8] Méhes, G.; Nomura, H.; Zhang, Q.-S.; Nakagawa, T.; Adachi, C. Angew. Chem. Int. Ed. 2012, 51, 11311.
[9] Nakagawa, T.; Ku, S.-Y.; Wong, K.-T. Chem. Commun. 2012, 48, 9580.
[10] Lee, S.-Y.; Yasuda, T.; Yang, Y.-S.; Zhang, Q.-S.; Adachi, C. Angew. Chem. Int. Ed. 2014, 53, 6402.
[11] Sun, J. W.; Lee, J.-H.; Moon, C.-K.; Kim, K.-H.; Shin, H.; Kim, J.-J. Adv. Mater. 2014, 26, 5684.
[12] Zhang, Q.-S.; Li, B.; Huang, S.-P.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326.
[13] Endo, A.; Sato, K.; Yoshimura, K.; Kai, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302.
[14] Huang, S.-P.; Zhang, Q.-S.; Shiota, Y.; Nakagawa, T.; Kuwabara, K.; Yoshizawa, K.; Adachi, C. J. Chem. Theory Comput. 2013, 9, 3872.
[15] Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
[16] Valchanov, G.; Ivanova, A.; Tadjer, A.; Chercka, D.; Baumgarten, M. Org. Electron. 2013, 14, 2727.
[17] Zhu, W.-H.; Bi, X.-F.; Liu, B. Acta Chim. Sinica 2007, 65, 1207. (朱为宏, 毕小芳, 刘博, 化学学报, 2007, 65, 1207.)
[18] Huang, C.-B.; Li, H.-R.; Luo, Y. Y.; Xu, L. Dalton Trans. 2014, 43, 8102.
[19] Grabchev, I.; Betcheva, R. J. Photochem. Photobiol. A: Chem. 2001, 142, 73.
[20] Gu, P.-Y.; Xu, X.-F.; Zhou, F.; Zhao, T.-T.; Ye, G.-J.; Liu, G.-Y.; Xu, Q.-H.; Ge, J.-F.; Xu, Q.-F.; Lu, J.-M. Chin. J. Chem. 2014, 32, 205.
[21] Ulla, H.; Garudachari, B.; Satyanarayan, M. N.; Umesh, G.; Isloor, A. M. Opt. Mater. 2014, 36, 704.
[22] Jiang, W.; Sun, Y.-M.; Wang, X.-L.; Wang, Q.; Xu, W.-L. Dyes Pigm. 2008, 77, 125.
[23] Frish, M. J.; Trucks, G. W.; Schlegel, H. B., et al. Gaussian 09, Revision B.1, Gaussian, Inc., Wallingford, CT, 2009.
[24] Hong, Y.-P. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2011. (洪艳平, 博士论文, 华南理工大学, 广州, 2011.)
[25] Sun, F.; Jin, R. J. Lumin. 2014, 149, 125.
[26] Malval, J.-P.; Suzuki, S.; Morlet-Savary, F.; Allonas, X.; Fouassier, J.-P.; Takahara, S.; Yamaoka, T. J. Phys. Chem. A 2008, 112, 3879.
[27] Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M. E.; Adachi, C. J. Am. Chem. Soc. 2002, 124, 9945.
[28] Milian-Medina, B.; Gierschner, J. Org. Electron. 2012, 13, 985.
[29] Deuchert, K.; Hunig, S. Angew. Chem. Int. Ed. Engl. 1978, 17, 875.
[30] Lee, S. Y.; Yasuda, T.; Nomura, H.; Adachi, C. Appl. Phys. Lett. 2012, 101, 093306.
[31] Nakanotani, H.; Higuchi, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C. Nat. Commun. 2014, 5, 4016.
[32] Zhang, Q.-S.; Kuwabara, H.; Potscavage, W. J.; Huang, S.-P.; Hatae, Y.; Shibata, T.; Adachi, C. J. Am. Chem. Soc. 2014, 10.1021/ja510144h.
[33] Takahashi, T.; Shizu, K.; Yasuda, T.; Togashi, K.; Adachi, C. Sci. Technol. Adv. Mater. 2014, 15, 034202.

Outlines

/