Article

Synthesis and Bioactivity Studies of Triketone-Containing Quinazoline-2,4-dione Derivatives

  • Wang Dawei ,
  • Lin Hongyan ,
  • Cao Runjie ,
  • Yang Shenggang ,
  • Chen Tao ,
  • He Bo ,
  • Chen Qiong ,
  • Yang Wenchao ,
  • Yang Guangfu
Expand
  • a Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079;
    b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071

Received date: 2014-11-22

  Online published: 2015-01-04

Supported by

Project supported by the National Key Technologies R&D Program of China (No. 2011BAE06B03) and the National Natural Science Foundation of China (Nos. 21372093, 21172091).

Abstract

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is an important enzyme in the catabolism of tyrosine, catalyzing the conversion of 4-hydroxyphenyl pyruvic acid (HPPA) into homogentisic acid (HGA), belonging to the 2-his-1-carboxylate facial triad family of non-heme iron(II) enzymes. As an important enzyme in regulating the biosynthesis of tocopherols and plastoquinone in plants, HPPD is an important target for herbicides discovery. Previously, we have found that triketone-containing quinazoline-2,4-dione motif can be used as a novel lead structure for herbicides discovery. In this continuous work, we synthesized a total number of 24 new triketone-containing quinazoline-2,4-dione derivatives. The new compounds 9a9x were prepared by using 5-methyl-2-nitrobenzoic acid as the starting material, followed by oxidation, esterification and reduction reactions, the main intermediate dimethyl 4-aminoisophthalate could be obtained in a yield of 83%, then by another six steps of reactions the target compounds could be smoothly synthesized. All the title compounds were characterized by 1H NMR, 13C NMR and HRMS spectrum data. To explore the biology activity of these compounds, their in vitro Arabidopsis thaliana HPPD (AtHPPD) inhibitory activity and in vivo herbicidal activity were evaluated. The results of AtHPPD inhibitory experiments indicated that, most of the synthesized compounds showed "good" to "the excellent" HPPD-inhibiting activities. To our delight that, compound 9i with a Ki value of 0.005 μmol/L is about two times more potent than that of mesotrione (Ki=0.013 μmol/L). The results of greenhouse experiments showed that, most of the synthesized compounds displayed at least 80% inhibition against one of six weeds tested at the rate of 150 g ai/ha. To our surprise that, compound 9g showed over 85% inhibition against four of six tested weeds even at a rate as low as 37.5 g ai/ha. In addition, it was also safe for rice and wheat by post-emergent application at the rate of 150 g ai/ha. Furthermore, we also obtained some structure-activity relationships, the SAR indicated that too electron-withdrawing groups in 3,5-positions of benzene ring (3-position of quinazoline-2,4-dione) were detrimental to activity, too sterically bulk groups at R4 were also detrimental to activity. Thus, compound 9g emerged as a new lead compound for herbicidal discovery.

Cite this article

Wang Dawei , Lin Hongyan , Cao Runjie , Yang Shenggang , Chen Tao , He Bo , Chen Qiong , Yang Wenchao , Yang Guangfu . Synthesis and Bioactivity Studies of Triketone-Containing Quinazoline-2,4-dione Derivatives[J]. Acta Chimica Sinica, 2015 , 73(1) : 29 -35 . DOI: 10.6023/A14110805

References

[1] Dayan, F. E.; Duke, S. O.; Sauldubois, A.; Singh, N.; McCurdy, C.; Cantrell, C. Phytochemistry 2007, 68, 2004.
[2] Neidig, M. L.; Decker, A.; Choroba, O. W.; Huang, F. L.; Kavana, M.; Moran, G. R.; Spencer, J. B.; Solomon, E. I. Proc. Natl. Acad. Sci. 2006, 103, 12966.
[3] Kovaleva, E. G.; Lipscomb, J. D. Nat. Chem. Biol. 2008, 4, 186.
[4] Brownlee, J. M.; Johnson-Winters, K.; Harrison, D. H.; Moran, G. R. Biochemistry 2004, 43, 6370.
[5] Ahrens, H.; Lange, G.; Müller, T.; Rosinger, C.; Willms, L.; van Almsick, A. Angew. Chem., Int. Ed. 2013, 52, 9388.
[6] Beaudegnies, R.; Edmunds, A. J. F.; Fraser, T. E. M.; Hall, R. G.; Hawkes, T. R.; Mitchell, G.; Schaetzer, J.; Wendeborn, S.; Wibley, J. Bioorg. Med. Chem. 2009, 17, 4134.
[7] Zhang, Y. B. Mod. Agrochem. 2013, 12, 5. (张一宾, 现代农药, 2013, 12, 5.)
[8] Zhou, Y. Y.; Li, Z. M. World Pest. 2013, 35, 1. (周蕴赟, 李正名, 世界农药, 2013, 35, 1.)
[9] Nie, K. C.; Fan, Z. J.; Liu, C. L. Chin. J. Pest. 2006, 45, 4. (聂开晟, 范志金, 刘长令, 农药, 2006, 45, 4.)
[10] Lin, J.; Li, Z. G.; Zou, J. W.; Lu, S. Y. Acta Chim. Sinica 2012, 70, 1309. (林军, 李祖光, 邹建卫, 陆绍永, 化学学报, 2012, 70, 1309.)
[11] Zhu, Y. Q.; Si, X. K.; Zou, X. M.; Liu, B.; Yang, H. Z. Chin. J. Org. Chem. 2007, 27, 385. (朱有全, 司学凯, 邹小毛, 刘斌, 杨华铮, 有机化学, 2007, 27, 385.)
[12] Zhu, Y. Q.; Hu, F. Z.; Zou, X. M.; Yao, C. S.; Liu, B.; Li, Y. H.; Yang, H. Z. Chin. J. Org. Chem. 2005, 25, 419. (朱有全, 胡方中, 邹小毛, 姚昌盛, 刘斌, 李永红, 杨华铮, 有机化学, 2005, 25, 419.)
[13] Huang, M. L.; Shang, Z. C.; Zou, J. W.; Yang, D. Y.; Yu, Q. S. Acta Chim. Sinica 2002, 60, 1558. (黄美兰, 商志才, 邹建卫, 杨定亚, 俞庆森, 化学学报, 2002, 60, 1558.)
[14] Wang, D. W.; Lin, H. Y.; Cao, R. J.; Ming, Z. Z.; Chen, T.; Hao, G. F.; Yang, W. C.; Yang, G. F. Pest Manag. Sci. 2014, doi: 10. 1002/ps. 3894.
[15] Wang, D. W.; Lin, H. Y.; Cao, R. J.; Sheng, G. Y.; Chen, Q.; Hao, G. F.; Yang, W. C.; Yang, G. F. J. Agric. Food Chem. 2014, 62, 11786.
[16] Lee, D. L.; Prisbylla, M. P.; Cromartie, T. H.; Dagarin, D. P.; Howard, S. W.; Provan, W. M.; Ellis, M. K.; Fraser, T.; Mutter, L. C. Weed Sci. 1997, 45, 601.
[17] Takabe, F.; Fukumoto, S.; Kajiki, R.; Asakura, S.; Ueno, R.; Kobayashi, M.; Takahashi, S.; Yonekura, N.; Hanai, R.; Mitsunari, T. WO 2007088876 A1, 2007 [Chem. Abstr. 2007, 147, 874408] .
[18] Tamai, R.; Ito, M.; Kobayashi, M.; Mitsunari, T.; Nakano, Y. WO 2009016841A1, 2009 [Chem. Abstr. 2009, 150, 138905] .
[19] Takable, F.; Hirano, Y.; Funyu, A.; Kobayashi, M.; Mitsunari, T. WO 2010089993 A1, 2010 [Chem. Abstr. 2010, 153, 1001443] .
[20] Patel, K. M.; Selby, T. P.; Smith, B. T.; Taggi, A. E.; Kovacs, P. R. WO 2012033548 A2, 2012 [Chem. Abstr. 2012, 156, 380307] .
[21] Yang, W. C.; Lin, H. Y.; Yang, S. G.; Liu, W. N.; Yang, G. F. Chin. J. Pest. Sci. 2013, 15, 129. (杨文超, 林红艳, 杨盛刚, 刘万年, 杨光富, 农药学学报, 2013, 15, 129.)
[22] Yang, W. C.; Li, H.; Zhu, X. L.; Wang, F.; Yang, G. F. ChemBioChem 2012, 13, 1542.
[23] Zhang, M. Z.; Chen, Q.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y. C.; Yang, G. F.; Clough, J. Eur. J. Med. Chem. 2012, 53, 283.
[24] Zhu, X. L.; Wang, F.; Li, H.; Yang, W. C.; Chen, Q.; Yang, G. F. Chin. J. Chem. 2012, 30, 1999.
[25] Jiang, L. L.; Zuo, Y.; Wang, Z. F.; Tan Y.; Wu, Q. Y.; Xi, Z.; Yang, G. F. J. Agric. Food Chem. 2011, 59, 6172.
[26] Chen, C. N.; Lv, L. L.; Ji, F. Q.; Chen, Q.; Xu, H.; Niu, C. W.; Xi, Z.; Yang, G. F. Bioorg. Med. Chem. 2009, 17, 3011.
[27] Chen, Q.; Liu, Y. C.; Zhang, M. Z.; Yang, G. F. Chin. J. Pest. Sci. 2009, 11, 31. (陈琼, 刘玉超, 张明智, 杨光富, 农药学学报, 2009, 11, 31.)
[28] Zhao, P. L.; Wang, F.; Zhang, M. Z.; Liu, Z. M.; Huang, W.; Yang, G. F. J. Agric. Food Chem. 2008, 56, 10767.
[29] Luo, Y. P.; Jiang, L. L.; Wang, G. D.; Chen, Q.; Yang, G. F. J. Agric. Food Chem. 2008, 56, 2118.
[30] Chen, Q.; Zhu, X. L.; Jiang, L. L.; Liu, Z. M.; Yang, G. F. Eur. J. Med. Chem. 2008, 43, 595.
[31] Li, Y. X.; Luo, Y. P.; Xi, Z.; Niu, C. W.; He, Y. Z.; Yang, G. F. J. Agric. Food Chem. 2006, 54, 9135.
[32] Chen, Q.; Long, D. Q.; Cheng, J.; Li, J.; Liu, Z. M.; Yang, G. F. Chem. J. Chin. Univ. 2006, 27, 454. (陈琼, 龙德清, 程靖, 李晶, 刘祖明, 杨光富, 高等学校化学学报, 2006, 27, 454.)

Outlines

/