Visible-Light Photoredox Catalysis in Natural Products Synthesis
Received date: 2014-12-12
Online published: 2015-01-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21232003, 21202053) and the National Basic Research Program of China (973 program, No. 2011CB808600).
In recent years, remarkable achievements have been made in the field of the visible-light-induced photoredox catalysis. Many highly efficient and environment-friendly reactions have been developed and used in the construction of complex molecules. This manuscript will highlight the latest advances in this research area and overview the applications of this strategy as the key step in the total synthesis of natural products and natural product-like compounds.
Tan Fen , Xiao Wenjing . Visible-Light Photoredox Catalysis in Natural Products Synthesis[J]. Acta Chimica Sinica, 2015 , 73(2) : 85 -89 . DOI: 10.6023/A14120860
[1] Ciamician, G. Science 1912, 36, 385.
[2] For selected early examples on visible-light photoredox catalysis in organic synthesis, see: (a) Pac, C.; Ihama, M.; Yasuda, M.; Miyauchi, Y.; Sakurai, H. J. Am. Chem. Soc. 1981, 103, 6495;
(b) Mandler, D.; Willner, I. J. Am. Chem. Soc. 1984, 106, 5352;
(c) Ishitani, O.; Yanagida, S.; Takamuku, S.; Pac, C. J. Org. Chem. 1987, 52, 2790.
[3] (a) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785;
(b) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527;
(c) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859;
(d) Shi, L.; Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687;
(e) Xi, Y.-M.; Yi, H.; Lei, A.-W. Org. Biomol. Chem. 2013, 11, 2387;
(f) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985;
(g) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem. Eur. J. 2014, 20, 3874.
[4] (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159;
(b) Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Top. Curr. Chem. 2007, 280, 117;
(c) Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Top. Curr. Chem. 2007, 281, 143.
[5] Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.
[6] Wang, C.; Gao, S.-T.; Zhou, X.; Wu, Q.-H.; Jiao, C.-N.; Wang, Z. Chin. J. Org. Chem. 2014, 34, 2217. (王春, 高书涛, 周欣, 吴秋华, 教彩娜, 王志, 有机化学, 2014, 34, 2217.)
[7] (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102;
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828;
(c) Xuan, J.; Lu, L.-L.; Chen, J.-R.; Xiao, W.-J. Eur. J. Org. Chem. 2013, 6775;
(d) Dai, X.-J.; Xu, X.-L.; Li, X.-N. Chin. J. Org. Chem. 2013, 33, 2046. (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046);
(e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[8] (a) Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350;
(b) Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329;
(c) Riener, M.; Nicewicz, D. A. Chem. Sci. 2013, 4, 2625;
(d) Mizoguchi, H.; Oikawa, H.; Oguri, H. Nat. Chem. 2014, 6, 57;
(e) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-L.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653.
[9] Bach, T.; Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.
[10] (a) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011, 50, 9655;
(b) Sun, Y.; Li, R.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2013, 52, 9201.
[11] Schnermann, M. J.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576.
[12] Yin, J.; Kong, L.-L.; Wang, C.; Shi, Y.-B.; Cai, S.-J.; Gao, S.-H. Chem. Eur. J. 2013, 19, 13040.
[13] Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. J. Org. Chem. 2014, 79, 11631.
[14] Beatty, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270.
[15] Ma, Z.-Q.; Wang, X.-L.; Wang, X.; Rodriguez, R. A.; Moore, C. E.; Gao, S.-H.; Tan, X.-H.; Ma, Y.-Y.; Rheingold, A. L.; Baran, P. S.; Chen, C. Science 2014, 346, 219.
/
〈 |
|
〉 |