One-pot Synthesis of Sn/Mesoporous Carbon Composite in a Polyol System with Well-improved Lithium Storage Capability
Received date: 2014-10-08
Online published: 2015-01-29
Supported by
Project Supported by the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province (No. BY2013001–01), Natural Science Foundation of Jiangsu Province (No. BK20130900), Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 13KJB150026), Priming Scientific Research Foundation for Advanced Talents in Nanjing Normal University (No. 2013103XGQ0008) and the Program Development of Jiangsu Higher Education Institutions.
By introducing three-dimensional mesoporous carbon (MC) as a conducting and buffering matrix, MC-Sn composite has been synthesized through a facile chemical reduction approach in a polyol system at the temperature of 170 ℃ which is protected by nitrogen atmosphere. Pure Sn nanoparticles were synthesized through the same methodology, but without the addition of MC. The morphology, structure and electrochemical performance of the products have been characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and constant current discharge/charge tests. It is indicated that numerous Sn nanoparticles have been uniformly and densely decorated on the MC matrix. When evaluated as an anode material for lithium-ion batteries (LIBs), the as-prepared MC-Sn composite exhibits markedly improved cycling stability and rate capability compared to pure Sn nanoparticles. For example, a high discharge capacity of 721.5 mAh•g-1 can be retained after 40 discharge/charge cycles at a current density of 100 mA•g-1 in the potential range of 0.01~2 V. When tested under the same condition, pure Sn nanoparticles remain only 361.7 mAh•g-1. The rate capability of MC-Sn composite was examined in comparison with pure Sn nanoparticles at various current densities from 100 to 200, 500 and 1000 mA•g-1. The MC-Sn composite delivers a discharge capacity of 760.5 mAh•g-1 at a current density of 100 mA•g-1 after 10 cycles. This value decreases to 555.6 mAh•g-1 (200 mA•g-1), 366.2 mAh•g-1 (500 mA• g-1), 265.8 mAh•g-1 (1000 mA•g-1), and finally returns to 684.3 mAh•g-1 at 100 mA•g-1. In sharp contrast, the discharge capacities of pure Sn nanoparticles decrease rapidly with the increase of current densities. These results demonstrate that the MC-Sn composite possesses markedly improved rate capability, making it a promising anode for LIBs with high power densities.
Ye Ya , Zhu Jingyi , Yao Yinan , Wang Yuguo , Wu Ping , Tang Yawen , Zhou Yiming , Lu Tianhong . One-pot Synthesis of Sn/Mesoporous Carbon Composite in a Polyol System with Well-improved Lithium Storage Capability[J]. Acta Chimica Sinica, 2015 , 73(2) : 151 -155 . DOI: 10.6023/A14100691
[1] Xu, Y.; Guo, J.; Wang, C. J. Mater. Chem. 2012, 22, 9562.
[2] Wang, C.; Li, Y.; Chui, Y. S.; Wu, Q. H.; Chen, X.; Zhang, W. Nanoscale 2013, 5, 10599.
[3] Uysal, M.; Cetinkaya, T.; Alp, A.; Akbulut, H. Appl. Surf. Sci. 2014, 290, 6.
[4] Derrien, G.; Hassoun, J.; Panero, S.; Scrosait, B. Adv. Mater. 2007, 19, 2336.
[5] Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. Adv. Mater. 2008, 20, 1160.
[6] Li, N.; Song, H.; Cui, H.; Wang, C. Nano Energy 2014, 3, 102.
[7] Wu, P.; Du, N.; Liu, J.; Zhang, H.; Yu, J.; Yang, D. R. Mater. Res. Bull. 2011, 46, 2278.
[8] Liu, X.; Xie, J. Y.; Zhao, H. L.; Wang, K.; Tang, W. P.; Pan, Y. L.; Feng, Z. H.; Lv, P. P. Acta Chim. Sinica 2013, 71, 1011. (刘欣, 解晶莹, 赵海雷, 王可, 汤卫平, 潘延林, 丰震河, 吕鹏鹏, 化学学报, 2013, 71, 1011.)
[9] Feng, R.; Wang, L. W.; Lv, Z. Y.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 653. (冯瑞, 王立伟, 吕之阳, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2014, 72, 653.)
[10] Dai, L. Q.; Wu, F.; Guan, Y. B.; Fu, K.; Jin, Y.; Gao, W.; Wang, Z.; Su, Y. F. Acta Chim. Sinica 2014, 72, 583. (戴丽琴, 吴锋, 官亦标, 傅凯, 金翼, 高伟, 王昭, 苏岳锋, 化学学报, 2014, 72, 583.)
[11] Chen, J.; Yang, L.; Fang, S.; Zhang, Z.; Deb, A.; Hirano, S. I. Electrochim. Acta 2014, 127, 390.
[12] Hassoun, J.; Derrien, G.; Panero, S.; Scrosait, B. Adv. Mater. 2008, 20, 3169.
[13] Yu, Y.; Gu, L.; Wang, C.; Dhanabalan, A.; Aken, P. A.; Maier, J. Angew. Chem. Int. Ed. 2009, 48, 6485.
[14] Wang, J.; Li, D.; Fan, X.; Gou, L.; Wang, J.; Li, Y.; Lu, X.; Li, Q. J. Alloys Compd. 2012, 516, 33.
[15] Zhu, Z.; Wang, S.; Du, J.; Jin, Q.; Zhang, T.; Chen, J. Nano Lett. 2014, 14, 153.
[16] Seo, S. D.; Lee, G. H.; Lim, A. H.; Min, K. M.; Kim, J. C.; Shim, H. Y.; Park, K. S.; Kim, D. W. RSC Adv. 2012, 2, 3315.
[17] Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K. J. Mater. Chem. 2009, 19, 8378.
[18] Wang, D.; Li, X.; Yang, J.; Wang, J.; Geng, D.; Li, R.; Cai, M.; Sham, T. K.; Sun, X. Phys. Chem. Chem. Phys. 2013, 15, 3535.
[19] Li, J.; Wu, P.; Lou, F.; Zhang, P.; Tang, Y.; Zhou, Y.; Lu, T. Electrochim. Acta 2013, 111, 862.
[20] Shen, L.; Zhang, X.; Uchaker, E.; Yuan, C.; Cao, G. Adv. Energy Mater. 2012, 2, 691.
[21] Chen, L.; Wu, P.; Xie, K.; Li, J.; Xu, B.; Cao, G.; Chen, Y.; Tang, Y.; Zhou, Y.; Lu, T.; Yang, Y. Electrochim. Acta 2013, 92, 433.
[22] Xu, B.; Peng, L.; Wang, G.; Cao, G.; Wu, F. Carbon 2010, 48, 2377.
[23] Xu, B.; Shi, L.; Guo, X.; Peng, L.; Wang, Z.; Chen, S.; Cao, G.; Wu, F.; Yang, Y. Electrochim. Acta 2011, 56, 6464.
/
〈 |
|
〉 |