Article

Synthesis and Characterization of Orange 3 Derivatives as Photoelectric Materials

  • Yang Rui ,
  • Cai Xuediao ,
  • Ding Liming
Expand
  • a Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119;
    b National Center for Nanoscience and Technology, Beijing 100190

Received date: 2014-11-14

  Online published: 2015-01-26

Supported by

Project supported by the Fundamental Research Funds for the Central Universities (No. GK200902008).

Abstract

Due to poorly solubility of the fused ring compound 4,10-dibromoanthanthrone (VAT Orange 3) in common organic solvents, its application as optoelectronic material was hindered. Here, the soluble compound 4,10-bis(4-hexyl-2-thienyl)- 6,12-bis(dicyanovinylene)dihydroanthanthrene (TCVA) was successfully synthesized by introducing alkyl-thiophenyl and cyano groups into VAT Orange 3 compound by Still coupling and Knoevenagel reaction. The properties of TCVA were investigated. The UV-vis spectrum indicated that TCVA showed strong absorbance in the solar spectrum. The TCVA exhibited lower LUMO energy level (-4.42 eV), which was comparable with fullerene acceptor material PCBM (-4.2 eV). The solar cell device ITO/ZnO/P3HT:TCVA/MoO3/Ag based on TCVA as acceptor and P3HT as donor material was fabricated. The power conversion efficiency (PCE) of 0.3% was achieved for acceptor TCVA with open-circuit voltage (Voc) of 0.22 V, short circuit current (Jsc) of 3.61 mA·cm-2 and fill factor (FF) of 37%. The solar cell based on TCVA achieved lower efficiency, maybe due to the lower LUMO energy level of TCVA and small difference of energy level (0.75 eV) between P3HT HOMO and TCVA LUMO. A lower LUMO energy level may lead to a lower open circuit voltage (Voc), since Voc is proportional to the energy level difference between the donor HOMO and acceptor LUMO. The donor polymer ploy[4,10-bis(4-hexyl-5-bromine-2-thienyl)-6,12-bis(dicyanovinylene)dihydroanthanthrene]-alt-2,6-bis(trimethyltin)-4,4-bis(2-ethylhexyl) two-thieno[3,2-b:2',3'-d]silole (PTCVADTS) with TCVA as the acceptor unit were synthesized and characterized. The polymer PTCVADTS showed good light-absorption properties, thermal stability, deep HOMO level (-5.33 eV), and low band gap (0.94 eV). Solar cell device ITO/PEDOT:PSS/ PTCVADTS:PC61BM/Ca/Al based on PTCVADTS as donor achieved an open-circuit voltage of 0.31 V and PCE of 0.018%. Compared with the LUMO level of acceptor (-4.2 eV), the lower LUMO level of donor (-4.39 eV) hindered the electron transport from donor to acceptor, which resulted in lower efficiency. Vat Orange 3 with large flat structure can expand conjugated system, which broadens the absorption. Further reducing the number of cyano group or introducing of other weaker electron withdrawing group may get results applauded.

Cite this article

Yang Rui , Cai Xuediao , Ding Liming . Synthesis and Characterization of Orange 3 Derivatives as Photoelectric Materials[J]. Acta Chimica Sinica, 2015 , 73(3) : 281 -288 . DOI: 10.6023/A14110781

References

[1] (a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
(b) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
(c) Jorgensen, M.; Norrman, K.; Krebs, F. C. Solar Energy Mater. Solar Cells 2008, 92, 686.
(d) Thompson, B. C.; Frechet, J. M. Angew. Chem., Int. Ed. 2008, 47, 58.
(e) Cao, J.; Zhang, W.; Xiao, Z.; Liao, L.; Zhu, W.; Zuo, Q.; Ding, L. Macromolecules 2012, 45, 1710.
(f) Li, Z.; Li, X.; Li, J.; Hu, Y. Chin. J. Org. Chem. 2013, 33, 891. (李战强, 李祥高, 李健, 胡雅琴, 有机化学, 2013, 33, 891.)
[2] (a) Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2014, 72, 158. (付钰, 王芳, 张燕, 方旭, 赖文勇, 黄维, 化学学报, 2014, 72, 158.)
(b) Li, X.; Zhao, B.; Cao, Z.; Shen, P.; Tan, S. Acta Chim. Sinica 2012, 70, 2433. (李新炜, 赵斌, 曹镇财, 沈平, 谭松庭, 化学学报, 2012, 70, 2433.)
[3] (a) Cheng, Y.; Yang, S.; Hsu, C. Chem. Rev. 2009, 109, 5868.
(b) Yuan, Y.; Yan, Z. J.; Ren, H.; Liu, Q. Y.; Zhu, G. S.; Sun, F. X. Acta Chim. Sinica 2012, 70, 1446. (元野, 闫卓君, 任浩, 刘青英, 朱广山, 孙福兴, 化学学报, 2012, 70, 1446.)
(c) Zhao, L.; Jiu, Y.; Wang, J.; Zhang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2013, 71, 1248. (赵玲玲, 酒元达, 王建云, 张新稳, 赖文勇, 黄维, 化学学报, 2013, 71, 1248.)
[4] (a) Zhang, M.; Guo, X.; Li, Y. Macromolecules 2011, 44, 8798.
(b) Huo, L.; Ye, L.; Wu, Y.; Li, Z.; Guo, X.; Zhang, M.; Zhang, S.; Hou, J. Macromolecules 2012, 45, 6923.
(c) Saadeh, H. A.; Lu, L.; He, F.; Bullock, J. E.; Wang, W.; Carsten, B.; Yu, L. ACS Macro Lett. 2012, 1, 361.
[5] Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am. Chem. Soc. 2008, 130, 12828.
[6] Chang, C. Y.; Cheng, Y. J.; Hung, S. H.; Wu, J. S.; Kao, W. S.; Lee, C. H.; Hsu, C. S. Adv. Mater. 2012, 24, 549.
[7] Xu, Y. X.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, Y. X.; Li, C. Z.; Li, X.; Chen, W. C.; Jen, A. K. Y. Adv. Mater. 2012, 24, 6356.
[8] He, F.; Wang, W.; Chen, W.; Xu, T.; Darling, S. B.; Strzalka, J.; Liu, Y.; Yu, L. J. Am. Chem. Soc. 2011, 133, 3284.
[9] Schroeder, B. C.; Huang, Z.; Ashraf, R. S.; Smith, J.; Angelo, P. D.; Watkins, S. E.; Anthopoulos, T. D.; Durrant, J. R.; McCulloch, I. Adv. Funct. Mater. 2012, 22, 1663.
[10] Zheng, Q.; Jung, B. J.; Sun, J.; Katz, H. E. J. Am. Chem. Soc. 2010, 132, 5394.
[11] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. Photonics. 2012, 6, 593.
[12] Son, H. J.; Lu, L.; Chen, W.; Xu, T.; Zheng, T.; Carsten, B.; Strzalka, J.; Darling, S. B.; Chen, L. X.; Yu, L. Adv. Mater. 2013, 25, 838.
[13] Wu, J. S.; Cheng, Y. J.; Dubosc, M.; Hsieh, C. H.; Chang, C. Y.; Hsu, C. S. Chem. Commun. 2010, 46, 3259.
[14] (a) Perez, M. D.; Borek, C.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2009, 131, 9281.
(b) Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
(c) Reese, M. O.; Nardes, A. M.; Rupert, B. L.; Larsen, R. E.; Olson, D. C.; Lloyd, M. T.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G.; Kopidakis, N. Adv. Funct. Mater. 2010, 20, 3476.
[15] (a) Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Adv. Mater. 2010, 22, 3876.
(b) Mishra, A.; Bauerle, P. Angew. Chem., Int. Ed. 2012, 51, 2020.
[16] (a) Ando, S.; Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 5336;
(b) Baek, N. S.; Hau, K.; Yip, H. L.; Acton, O.; Chen, K. S.; Jen, A. K. Y. Chem. Mater. 2008, 20, 5734.
[17] Giguere, J. B.; Verolet, Q.; Morin, J. F. Chem. Eur. J. 2013, 19, 372.
[18] Bures, F.; Schweizer, W. B.; Boudon, C.; Gisselbrecht, J. P.; Gross, M.; Diederich, F. Eur. J. Org. Chem. 2008, 6, 994.
[19] Zhong, H. L.; Li, Z. Deledalle, F.; Durrant, J. R.; Heeney, M. J. Am. Chem. Soc. 2013, 135, 2040.
[20] Cao, J. M.; Zhang, W.; Liu, Y.; Xiao, Z.; Zhu, W. G.; Zuo, Q. Q.; Ding, L. M. Macromolecules 2012, 45, 1710.
[21] Fernandes, J. A.; Morisaki, Y.; Chujo, Y. Polym. J. 2011, 43, 733.
[22] (a) He, Y.; Chen, H.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377.
(b) Burkhart, B.; Khlyabich, P. P.; Thompson, B. C. Macromolecules 2012, 45, 3740.
[23] Winder, C.; Matt, G.; Hummelen, J. C.; Janssen, R. A. J.; Sariciftci, N. S.; Brabec, C. J. Thin Solid Films 2002, 403, 373.
[24] Meskers, S. C. J.; Hubner, J.; Oestreich, M.; Bässler, H. J. Phys. Chem. B 2001, 105, 9139.
[25] Pao, Y,; Chen, Y.; Cheng, S.; Lai, Y.; Huang, W.; Cheng, J. Org. Lett. 2014, 16, 5424.
[26] Zou, W. W.; Liu, Y.; Jia, Q. M.; Ge, Z. Y. Chin. J. Org. Chem. 2013, 33, 1522. (邹文武, 刘颖, 贾庆明, 葛子义, 有机化学, 2013, 33, 1522.)
[27] Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374.
[28] Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868.
[29] Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.

Outlines

/