Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell I:Structure of Membrane Electrode Assembly
Received date: 2014-12-05
Online published: 2015-01-29
Supported by
Project supported by the National Natural Science Foundation of China (No. U1137602), National Science Foundation of Beijing (No. 2132051), National High Technology Research and Development Program of China (No. 2013AA031902), The Innovation Foundation of BUAA for PhD Graduates (No. YWF-14-YJSY-047).
Although considered as the most viable approach for mobile powers, traditional polymer electrolyte membrane fuel cells require burdensome humidification and water management systems. The bipolar fuel cell (BPFC) or hybrid membrane fuel cell won noticeable interest because its potential self-humidification. BPFC is a novel polyelectrolyte membrane fuel cell involving both anion and cation polyelectrolyte and a new kind of acidic-alkaline bipolar reaction interface was presented in the cell. The potential advantages of a BPFC are twofold: (a) the alkaline cathode with inherently faster kinetics that allows use of non-platinum catalysts, thereby significantly reducing the total cost of a fuel cell; (b) the water generation or dissociation reaction takes place at the bipolar interface providing the possibility to devise self-humidification over the entire cell. Despite the BPFC have such attractive potentials, the BPFC developed to date had not yet demonstrated these feature and have operated at very modest power densities. As the development of BPFC is still in their infancy, it still remains uncertain how the bipolar interface works and effects in the cell. In the present study, four types of bipolar membrane electrode configuration containing two or one kind of bipolar interface, either water generation or dissociation interfaces, were fabricated to evaluate the effect of bipolar interface on the cell output performance. Results show that the preferred configuration with only one bipolar interface generating water can benefit the cell output. The reason could be the faster water formation reaction kinetics in this kind of bipolar interface and lower interfacial potential loss with only one bipolar interface. Within this preferred membrane electrode configuration, we have realized and demonstrated the BPFC that operate under completely self-humidifying conditions for prolonged periods successfully. As we can see, optimization of the membrane electrode configurations and further advances in fabricating bipolar interface would open the way for the development of practical self-regulating portable fuel cells.
Peng Sikan , Xu Xin , Zhang Jin , Liu Yiyang , Lu Shanfu , Xiang Yan . Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell I:Structure of Membrane Electrode Assembly[J]. Acta Chimica Sinica, 2015 , 73(2) : 137 -142 . DOI: 10.6023/A14120842
[1] Bi, H. P.; Chen, S. W.; Wang, J. L.; Zhang, X.; Gao, Z. L.; Zhang, S.; Tao, Y. Y.; Wang, L. J. Chem. J. Chin. Univ.-Chin. 2009, 30(11), 2306. (毕慧平, 陈守文, 王佳力, 张轩, 高智琳, 张莎, 陶应勇, 王连军, 高等学校化学学报, 2009, 30(11), 2306.)
[2] Liu, Y.-L.; Su, Y.-H.; Chang, C.-M.; Suryani; Wang, D.-M.; Lai, J.-Y. J. Mater. Chem. 2010, 20(21), 4409.
[3] Hu, H.; Xiao, M.; Wang, S. J.; Shen, P. K.; Meng, Y. Z. Fuel Cells 2011, 11(3), 353.
[4] Jiao, K.; Li, X. Prog. Energy Combust. Sci. 2011, 37(3), 221.
[5] Fang, B.; Chaudhari, N. K.; Kim, M. S.; Kim, J. H.; Yu, J. S. J. Am. Chem. Soc. 2009, 131(42), 15330.
[6] Li, B.; Yan, Z. Y.; Higgins, D. C.; Yang, D. J.; Chen, Z. W.; Ma, J. X. J. Power Sources 2014, 262, 488.
[7] Wang, X. Z.; Fu, R.; Zhen, J. S.; Ma, J. X. Acta Phys.-Chim. Sin. 2011, (08), 1875. (王喜照, 符蓉, 郑俊生, 马建新, 物理化学学报, 2011, (08), 1875.)
[8] Lü, H. F.; Cheng, N. C.; Mu, S. C.; Pan, M. Acta Chim. Sinica 2009, 67(14), 1680. (吕海峰, 程年才, 木士春, 潘牧, 化学学报, 2009, 67(14), 1680.)
[9] Wang, A.-L.; Sun, Y.; Liang, Z.-X.; Chen, Q.-L. Acta Chim. Sinica 2009, 67(22), 2554. (王爱丽, 孙瑜, 梁志修, 陈胜利, 化学学报, 2009, 67(22), 2554.)
[10] Lu, S. F.; Pan, J.; Huang, A. B.; Zhuang, L.; Lu, J. T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(52), 20611.
[11] Pan, J.; Chen, C.; Zhuang, L.; Lu, J. T. Acc. Chem. Res. 2012, 45(3), 473.
[12] Pan, J.; Chen, C.; Li, Y.; Wang, L.; Tan, L.; Li, G.; Tang, X.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2014, 7, 354.
[13] Huo, S.; Deng, H.; Chang, Y.; Jiao, K. Int. J. Hydrogen Energy 2012, 37(23), 18389.
[14] Deng, H.; Huo, S.; Chang, Y.; Zhou, Y.; Jiao, K. Int. J. Hydrogen Energy 2013, 38(15), 6509.
[15] Gulzow, E. Fuel Cells 2004, 4(4), 251.
[16] Schulze, A.; Gulzow, E. J. Power Sources 2004, 127(1~2), 252.
[17] Merle, G.; Wessling, M.; Nijmeijer, K. J. Membr. Sci. 2011, 377(1~2), 1.
[18] Liu, H.; Wang, S. L.; Jiang, L. H.; Sun, G. Q. Scientia Sinica Chimica 2011, 41(12), 1857. (柳鹤, 王素力, 姜鲁华, 孙公权, 中国科学: 化学, 2011, 41(12), 1857.)
[19] Lin, B. C.; Qiu, L. H.; Lu, J. M.; Yan, F. Chem. Mater. 2010, 22(24), 6718.
[20] Tang, D.; Pan, J.; Lu, S.; Zhuang, L.; Lu, J. Sci. China Chem. 2010, 53(02), 357.
[21] Ünlü, M.; Zhou, J. F.; Kohl, P. A. J. Phys. Chem. C 2009, 113(26), 11416.
[22] Ünlü, M.; Zhou, J.; Kohl, P. A. Fuel Cells 2010, 10(1), 54.
[23] Ünlü, M.; Zhou, J.; Kohl, P. A. Angew. Chem., Int. Ed. 2010, 49(7), 1299.
[24] Peng, S.; Lu, S.; Zhang, J.; Sui, P.-C.; Xiang, Y. Phys. Chem. Chem. Phys. 2013, 15(27), 11217.
/
〈 |
|
〉 |