Article

Site Preferences of Nucleic Acid Bases Hydrogen Bonding to Glycine Dipeptide

  • Liu Chang ,
  • Yu Ge ,
  • Huang Cuiying ,
  • Wang Changsheng
Expand
  • School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029

Received date: 2014-12-16

  Online published: 2015-01-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 21173109), Program for Liaoning Excellent Talents in University, China (No. LR2012037), and Program for Leading Figures in Dalian, China.

Abstract

The optimal structures of twenty-eight hydrogen-bonded complexes, containing one glycine dipeptide molecule and one of the nucleic acid base adenine, thymine, uracil, guanine and cytosine, were obtained at the B3LYP/6-31+G(d,p) level. The binding energies of these complexes were further evaluated at the CP-corrected MP2/aug-cc-pVTZ level. The site-preferences of the five nucleic acid bases hydrogen bonding to glycine dipeptide are explored. The calculation results show that any of the five nucleic acid bases can hydrogen bond to glycine dipeptide through different binding site. The hydrogen-bonded complexes formed through site A3 of adenine, site T1 of thymine, site U1 of uracil, site C1 of cytosine and site G3 of guanine are the most stable. The stability of the hydrogen-bonded complexes is associated with the enthalpy change of the protonation/deprotonation reaction of the nucleic acid bases. The more negative the enthalpy change of the protonation reaction or the smaller the enthalpy change of the deprotonation reaction, the more stable the hydrogen-bonded complexes.

Cite this article

Liu Chang , Yu Ge , Huang Cuiying , Wang Changsheng . Site Preferences of Nucleic Acid Bases Hydrogen Bonding to Glycine Dipeptide[J]. Acta Chimica Sinica, 2015 , 73(4) : 357 -365 . DOI: 10.6023/A14120869

References

[1] Robertson, A. D.; Murphy, K. P. Chem. Rev. 1997, 97, 1251.
[2] Li,Y.; Wang, C. S. J. Comput. Chem. 2011, 32, 2765.
[3] Li, S. S.; Huang, C. Y.; Hao, J. J.; Wang. C. S. J. Comput. Chem. 2014, 35, 415.
[4] Schroeder, R.; Grossberger, R.; Pichler, A.; Waldsich, C. Curr. Opin. Struct. Biol. 2002, 12, 296.
[5] Wang, Z. X.; Wu, C.; Lei, H. X.; Duan, Y. J. Chem. Theory Comput. 2007, 3, 1527.
[6] Li, Y.; Jiang, X. N.; Wang. C. S. J. Comput. Chem. 2011, 32, 953.
[7] Fu, Y. W.; Gao, J. M.; Bieschke, J.; Dendle, M. A.; Kelly, J. W. J. Am. Chem. Soc. 2006, 128, 15948.
[8] Laudo, M. D.; Whittleton, S. R.; Wetmore, S. D. J. Phys. Chem. A 2003, 107, 10406.
[9] Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B.; Dixon, D. A. J. Phys. Chem. A 2001, 105, 4963.
[10] Lin, X. F.; Sun, C. K.; Yang, S. Y.; Yu, S. W.; Yao, L. F.; Chen, Y. S. Acta Chim. Sinica 2011, 69, 2787. (林雪飞, 孙成科, 杨思娅, 余仕问, 姚立峰, 陈益山, 化学学报, 2011, 69, 2787.)
[11] Shi, Z. M.; Song, Y.; Lu, F.; Zhou, T. Y.; Zhao, X.; Zhang, W. K. ; Li, Z. T. Acta Chim. Sinica 2013, 71, 51. (施朱明, 宋宇, 陆方, 周天佑, 赵新, 张文科, 黎占亭, 化学学报, 2013, 71, 51.)
[12] Garvie, C. W.; Wolberger, C. Molecular Cell 2001, 8(5), 937.
[13] Schwabe, J. W. R. Curr. Opin. Struct. Biol. 1997, 7(1), 126.
[14] Janin, J. Struct. Folding Design 1999, 7(12), 277.
[15] Hunter, K. C.; Wetmore, S. D. J. Phys. Chem. A 2007, 111, 1933.
[16] Stivers, J. T.; Jiang, Y. L. Chem. Rev. 2003, 103, 2729.
[17] Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. B 2004, 108, 3335.
[18] Seong, G. H.; Niimi, T.; Yanagida, Y. Anal. Chem. 2000, 72(6), 1288.
[19] Dabkowska, I.; Rak, J.; Gutowski, M. J. Phys. Chem. A 2002, 106, 7423.
[20] Janke, E. M. B.; Weisz, K. J. Phys. Chem. A 2007, 111, 12136.
[21] Cherstvy, A. G. J. Phys. Chem. B 2009, 113, 4242.
[22] Gu, J.; Wang, J.; Leszczynski, J. J. Phys. Chem. B 2006, 110, 13590.
[23] Jeong, E.; Kim, H.; Lee, S. W.; Han, K. Mol. Cells 2003, 16, 161.
[24] Panecka, J.; Havrila, M.; Reblora, K.; Sponer, J.; Trylska, J. J. Phys. Chem. B 2014, 118, 6687.
[25] Liu, D. J.; Wang, C. S. Acta Phys.-Chim. Sin. 2012, 28, 2809. (刘冬佳, 王长生, 物理化学学报, 2012, 28, 2809.)
[26] Betancourt, M. R. J. Phys. Chem. B 2002, 106, 599.
[27] Liu, S.; Li, S. S.; Liu, D. J.; Wang, C. S. Acta Phys.-Chim. Sin. 2013, 29, 2551. (刘帅, 李书实, 刘冬佳, 王长生, 物理化学学报, 2013, 29, 2551.)
[28] Radhakrishnan, M. L.; Tidor, B. J. Phys. Chem. B 2007, 111, 13419.
[29] Rahimian, M.; Miao, Y.; Wilson, W. D. J. Phys. Chem. B 2008, 112, 8770.
[30] Huang, C. Y.; Li, Y.; Wang, C. S. Sci. China Chem. 2013, 56, 238.
[31] Feyer, V.; Plekan, O.; Tsud, N.; Lyamayev, V.; Chab, V.; Matolin, V.; Price, K. C.; Carravetta, V. J. Phys. Chem. C 2010, 114, 10922.
[32] Folliet, N.; Gervais, C.; Costa, D.; Lauient, G.; Babonneau, F.; Stievano, L.; Lambert, J. F.; Tielens, F. J. Phys. Chem. C 2013, 117, 4104.
[33] Chatterjee, A.; Zhang, L.; Leung, K. T. J. Phys. Chem. C 2012, 116, 10968.
[34] Hanus, M.; Kabelac, M.; Rejnek, J.; Ryaacek, F.; Hobza, P. J. Phys. Chem. B 2004, 108(6), 2087.
[35] Steindal, A. H.; Ruud, K.; Frediani, L.; Aidas, K.; Kongsted, J. J. Phys. Chem. B 2011, 115, 3027.
[36] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
[37] Biegler, K. F.; Schonbohm, J.; Bayles, D. J. Comput. Chem. 2001, 22, 545.
[38] Sun, L.; Cukier, R. I.; Bu, Y. J. Phys. Chem. B 2007, 111, 1802.

Outlines

/