Review

Silicon-based Organic/inorganic Hybrid Solar Cells

  • Liu Ruiyuan ,
  • Sun Baoquan
Expand
  • Institute of Functional Nano & Soft Materials FUNSOM, Soochow University, Suzhou 215123

Received date: 2014-10-09

  Online published: 2015-02-02

Supported by

Project supported by the National Basic Research Program of China (973 Program) (No. 2012CB932402), the National Natural Science Foundation of China (Nos. 61176057, 91123005, 60976050), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract

Organic-inorganic hybrid solar cells display potential to be high efficiency and low cost photovoltaics due to combined advantages of high stability, high mobility and well developed fabrication process from inorganic materials and the properties to adjust organic molecule structure, absorption spectrum and bandgap from solution processable organics. Heterojunction photovoltaics formed by silicon and organics at low temperature has drawn great interests over past five years and the reported highest power conversion efficiency (PCE) has achieved up to 13.8%. The emerging of nanotechnology allows for silicon micro/nano structures including silicon nanowires, pyramids and nanocones with excellent light absorption properties which can greatly reduce the consumption of silicon materials as well as the purity dependence. The micro/nano structures also exhibit the advantages to offer larger junction area and more effective separation pathways for charge carriers. It is noticeable that silicon nanowire-based flexible hybrid solar cells with tens of micrometers silicon substrate thickness have achieved the PCE of above 12% adopting the most popular commercialized conjugated polymer poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). With the rapid developments of new organic materials and interface engineering methods, different kinds of organic-silicon hybrid solar cells has been reported and shown superior photovoltaic characteristics. The adopted organics include PEDOT:PSS, poly(3-hexylthiophene) (P3HT), 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), poly(3-octylthiophene) (P3OT), fullerene derivative and so on. This paper reviews the device structures of silicon-based hybrid solar cells, working mechanism and related organic molecular. The hybrid heterojunction with different materials and fabrication processes has been discussed. The last section summarizes the method used to improve the performance of the hybrid solar cells and depicts the challenges and prospects of the silicon-based hybrid solar cells in the near future.

Cite this article

Liu Ruiyuan , Sun Baoquan . Silicon-based Organic/inorganic Hybrid Solar Cells[J]. Acta Chimica Sinica, 2015 , 73(3) : 225 -236 . DOI: 10.6023/A14100693

References

[1] Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W. Prog. Photovolt: Res. Appl. 2001, 9, 287.
[2] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
[3] (a) You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.
(b) Liu, Z.; Xu, F.; Yan, D. Acta Chim. Sinica 2014, 72, 171. (刘震, 徐丰, 严大东, 化学学报, 2014, 72, 171.)
(c) Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2014, 72, 158. (付钰, 王芳, 张燕, 方旭, 赖文勇, 黄维, 化学学报, 2014, 72, 158.)
(d) He, P.; Li, Z.; Hou, Q.; Wang, Y. Chin. J. Org. Chem. 2013, 33, 288. (和平, 李在房, 侯秋飞, 王艳玲, 有机化学, 2013, 33, 288.)
[4] (a) Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153.
(b) Ye, H.; Li, W.; Li, W. Chin. J. Org. Chem. 2012, 32, 266. (叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.)
(c) Fang, J.; Yu, X.; Yang, X.; Li, W.; An, D. Chin. J. Org. Chem. 2012, 32, 1261. (方敬坤, 俞宪, 杨鑫, 李文风, 安德烈, 有机化学, 2012, 32, 1261.)
(d) Liu, X.; Chen, C.; He, R.; Shen, W.; Li, M. Acta Chim. Sinica 2012, 70, 2365. (刘小锐, 陈春香, 何荣幸, 申伟, 李明, 化学学报, 2012, 70, 2365)
(e) Cao, Z.; He, Z.; Deng, L.;Tan, S. Chin. J. Org. Chem. 2014, 34, 340. (曹镇财, 何舟, 邓利军, 谭松庭, 有机化学, 2014, 34, 340.)
[5] Fthenakis, V. M.; Kim, H. C. Solar Energy 2011, 85, 1609.
[6] Sailor, M. J.; Ginsburg, E. J.; Gorman, C. B.; Kumar, A.; Grubbs, R. H.; Lewis, N. S. Science 1990, 249, 1146.
[7] Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
[8] He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H. Sci. Rep. 2014, 4, 3715.
[9] Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Nature 2007, 449, 885.
[10] Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Appl. Phys. Lett. 2007, 91, 233117.
[11] Garnett, E.; Yang, P. Nano Lett. 2010, 10, 1082.
[12] Peng, K. Q.; Lee, S. T. Adv. Mater. 2011, 23, 198.
[13] Hu, L.; Chen, G. Nano Lett. 2007, 7, 3249.
[14] Peng, K.-Q.; Wang, X.; Li, L.; Wu, X.-L.; Lee, S.-T. J. Am. Chem. Soc. 2010, 132, 6872.
[15] Han, S. E.; Chen, G. Nano Lett. 2010, 10, 1012.
[16] Sai, H.; Kanamori, Y.; Arafune, K.; Ohshita, Y.; Yamaguchi, M. Prog. Photovolt: Res. Appl. 2007, 15, 415.
[17] Mavrokefalos, A.; Han, S. E.; Yerci, S.; Branham, M. S.; Chen, G. Nano Lett. 2012, 12, 2792.
[18] Cheng, H.-H.; Chang, Y.-Y.; Chu, J.-Y.; Lin, D.-Z.; Chen, Y.-P.; Li, J.-H. Appl. Phys. Lett. 2012, 101, 141113.
[19] Mavrokefalos, A.; Han, S. E.; Yerci, S.; Branham, M. S.; Chen, G. Nano Lett. 2012, 12, 2792.
[20] Riad, S. Thin Solid Films 2000, 370, 253.
[21] Williams, E. L.; Jabbour, G. E.; Wang, Q.; Shaheen, S. E.; Ginley, D. S.; Schiff, E. A. Appl. Phys. Lett. 2005, 87, 223504.
[22] El-Nahass, M. M.; Abd-El-Rahman, K. F.; Farag, A. A. M.; Darwish, A. A. A. Org. Electron. 2005, 6, 129.
[23] El-Nahass, M. M.; Zeyada, H. M.; Aziz, M. S.; Makhlouf, M. M. Thin Solid Films 2005, 492, 290.
[24] Avasthi, S.; Lee, S.; Loo, Y. L.; Sturm, J. C. Adv. Mater. 2011, 23, 5762.
[25] Jeong, S.; Garnett, E. C.; Wang, S.; Yu, Z.; Fan, S.; Brongersma, M. L.; McGehee, M. D.; Cui, Y. Nano Lett. 2012, 12, 2971.
[26] Liu, Q.; Ono, M.; Tang, Z.; Ishikawa, R.; Ueno, K.; Shirai, H. Appl. Phys. Lett. 2012, 100, 183901.
[27] Wei, W. R.; Tsai, M. L.; Ho, S. T.; Tai, S. H.; Ho, C. R.; Tsai, S. H.; Liu, C. W.; Chung, R. J.; He, J. H. Nano Lett. 2013, 13, 3658.
[28] Zhang, Y.; Zu, F.; Lee, S.-T.; Liao, L.; Zhao, N.; Sun, B. Adv. Energy Mater. 2015, 8, 297.
[29] Liu, R.; Lee, S. T.; Sun, B. Adv. Mater. 2014, 26, 6007.
[30] Wang, W.; Schiff, E. A. Appl. Phys. Lett. 2007, 91, 133504.
[31] Seo, J. H.; Kim, D. H.; Kwon, S. H.; Park, Y. C.; Jung, H. H.; Lee, H. W.; Kwon, J. D.; Park, S. G.; Nam, K. S.; Jeong, Y.; Ryu, S. Y.; Kang, J. W.; Kim, C. S. Phys. Chem. Chem. Phys. 2013, 15, 1788.
[32] (a) Liu, Q.; Khatri, I.; Ishikawa, R.; Ueno, K.; Shirai, H. Appl. Phys. Lett. 2013, 102, 183503.
(b) Zhu, Y.; Song, T.; Zhang, F.; Lee, S. T.; Sun, B. Appl. Phys. Lett. 2013, 102, 113504.
[33] Pietsch, M.; Bashouti, M. Y.; Christiansen, S. J. Phys. Chem. C 2013, 117, 9049.
[34] Fang, X.; Song, T.; Liu, R.; Sun, B. J. Phys. Chem. C 2014, 118, 20238.
[35] Thomas, J. P.; Leung, K. T. Adv. Funct. Mater. 2014, 24, 4978.
[36] Erickson, A. S.; Zohar, A.; Cahen, D. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201301724.
[37] Pietsch, M.; Jäckle, S.; Christiansen, S. Appl. Phys. A 2014, 115, 1109.
[38] (a) Zhang, Y.; Liu, R.; Lee, S.-T.; Sun, B. Appl. Phys. Lett. 2014, 104, 083514.
(b) Zhang, Y.; Cui, W.; Zhu, Y.; Zu, F.; Liao, L.; Lee, S.-T.; Sun, B. Energy Environ. Sci. 2015, 10.1039/C4EE02282C.
[39] Oh, J.; Yuan, H.-C.; Branz, H. M. Nat. Nanotechnol. 2012, 7, 743.
[40] Schmidt, V.; Wittemann, J. V.; Gösele, U. Chem. Rev. 2010, 110, 361.
[41] Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Adv. Mater. 2011, 23, 285.
[42] (a) Peng, K.-Q.; Lee, S.-T. Adv. Mater. 2011, 23, 198.
(b) Liu, R.; Zhang, F.; Con, C.; Cui, B.; Sun, B. Nanoscale Res. Lett. 2013, 8, 155.
(c) Bai, F.; Li, M.; Huang, R.; Li, Y.; Trevor, M.; Musselman, K. P. RSC Adv. 2014. 4, 1794.
[43] Kayes, B. M.; Atwater, H. A.; Lewis, N. S. J. Appl. Phys. 2005, 97, 114302.
[44] Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Nano Lett. 2008, 8, 710.
[45] Shiu, S.-C.; Chao, J.-J.; Hung, S.-C.; Yeh, C.-L.; Lin, C.-F. Chem. Mater. 2010, 22, 3108.
[46] Lu, W.; Wang, C.; Yue, W.; Chen, L. Nanoscale 2011, 3, 3631.
[47] He, L.; Jiang, C.; Lai, D. IEEE Electr. Device Lett. 2011, 32, 1406.
[48] Shen, X.; Sun, B.; Liu, D.; Lee, S. T. J. Am. Chem. Soc. 2011, 133, 19408.
[49] He, L.; Jiang, C.; Rusli; Lai, D.; Wang, H. Appl. Phys. Lett. 2011, 99, 021104.
[50] He, L.; Jiang, C.; Wang, H.; Lai, D.; Rusli ACS Appl. Mater. Interfaces 2012, 4, 1704.
[51] Zhang, F.; Liu, D.; Zhang, Y.; Wei, H.; Song, T.; Sun, B. ACS Appl. Mater. Interfaces 2013, 5, 4678.
[52] Pudasaini, P. R.; Ruiz-Zepeda, F.; Sharma, M.; Elam, D.; Ponce, A.; Ayon, A. A. ACS Appl. Mater. Interfaces 2013, 5, 9620.
[53] Yu, P.; Tsai, C.-Y.; Chang, J.-K.; Lai, C.-C.; Chen, P.-H.; Lai, Y.-C.; Tsai, P.-T.; Li, M.-C.; Pan, H.-T.; Huang, Y.-Y.; Wu, C.-I.; Chueh, Y.-L.; Chen, S.-W.; Du, C.-H.; Horng, S.-F.; Meng, H.-F. ACS Nano 2013, 7, 10780.
[54] Zhang, J.; Song, T.; Shen, X.; Yu, X.; Lee, S.-T.; Sun, B. ACS Nano 2014, 8, 11369.
[55] Thiyagu, S.; Hsueh, C. C.; Liu, C. T.; Syu, H. J.; Lin, T. C.; Lin, C. F. Nanoscale 2014, 6, 3361.
[56] Kalita, G.; Adhikari, S.; Aryal, H. R.; Afre, R.; Soga, T.; Sharon, M.; Koichi, W.; Umeno, M. J. Phys. D: Appl. Phys. 2009, 42, 115104.
[57] Kuo, C. Y.; Gau, C. Appl. Phys. Lett. 2009, 95, 053302.
[58] Huang, J.-S.; Hsiao, C.-Y.; Syu, S.-J.; Chao, J.-J.; Lin, C.-F. Sol. Energy Mater. Sol. Cells 2009, 93, 621.
[59] Eisenhawer, B.; Sensfuss, S.; Sivakov, V.; Pietsch, M.; Andrä, G.; Falk, F. Nanotechnology 2011, 22, 315401.
[60] Zhang, F.; Sun, B.; Song, T.; Zhu, X.; Lee, S. Chem. Mater. 2011, 23, 2084.
[61] Zhang, F.; Han, X.; Lee, S.-t.; Sun, B. J. Mater. Chem. 2012, 22, 5362.
[62] Wu, Y.; Zhang, X.; Jie, J.; Xie, C.; Zhang, X.; Sun, B.; Wang, Y.; Gao, P. J. Phys. Chem. C 2013, 117, 11968.
[63] Chen, T.-G.; Huang, B.-Y.; Chen, E.-C.; Yu, P.; Meng, H.-F. Appl. Phys. Lett. 2012, 101, 033301.
[64] Chen, J.-Y.; Yu, M.-H.; Chang, S.-F.; Sun, K. W. Appl. Phys. Lett. 2013, 103, 133901.
[65] Schmidt, J.; Titova, V.; Zielke, D. Appl. Phys. Lett. 2013, 103, 183901.
[66] He, L.; Lai, D.; Wang, H.; Jiang, C.; Rusli Small 2012, 8, 1664.
[67] Jeong, H.; Song, H.; Pak, Y.; Kwon, I. K.; Jo, K.; Lee, H.; Jung, G. Y. Adv. Mater. 2014, 26, 3445.
[68] Liu, C.-Y.; Holman, Z. C.; Kortshagen, U. R. Nano Lett. 2008, 9, 449.
[69] Liu, C.-Y.; Holman, Z. C.; Kortshagen, U. R. Adv. Funct. Mater. 2010, 20, 2157.
[70] Ding, Y.; Gresback, R.; Liu, Q.; Zhou, S.; Pi, X.; Nozaki, T. Nano Energy 2014, 9, 25.
[71] (a) Chi, D.; Qi, B.; Wang, J.; Qu, S.; Wang, Z. Appl. Phys. Lett. 2014, 104, 193903.
(b) Guo, W.; Liu, F.; Zhu, M.; Zhou, Y.; Liu, J. Phys. Status Solidi C 2011, 8, 2810.
(c) Liu, K.; Qu, S.; Zhang, X.; Tan, F.; Wang, Z. Nanoscale Res. Lett. 2013, 8, 1.
(d) Sheng, J.; Fan, K.; Wang, D.; Han, C.; Fang, J.; Gao, P.; Ye, J. ACS Appl. Mater. Interfaces 2014, 6, 16027.
(e) Tang, Z.; Liu, Q.; Chen, Q.; Khatri, I.; Shirai, H. Phys. Status Solidi A 2014, 211, 1179. (f) Zhao, H.; Xie, D.; Feng, T.; Zhao, Y.; Xu, J.; Li, X.; Zhu, H.; Ren, T. Appl. Phys. Express 2014, 7, 031603. (g) Zhao, Y.; Xie, D.; Xu, J.; Feng, T.; Zhang, X.; Ren, T.; Zhu, M.; Zhu, H. PIERS Proceedings 2014.
[72] (a) Kim, T.; Jeon, J. H.; Han, S.; Lee, D.-K.; Kim, H.; Lee, W.; Kim, K. Appl. Phys. Lett. 2011, 98, 183503.
(b) Kim, T.; Choi, J. Y.; Jeon, J. H.; Kim, Y.-S.; Kim, B.-S.; Lee, D.-K.; Kim, H.; Han, S.; Kim, K. Mater. Res. Bull. 2012, 47, 3040.
(c) Seo, J. H.; Kim, D.-H.; Kwon, S.-H.; Song, M.; Choi, M.-S.; Ryu, S. Y.; Lee, H. W.; Park, Y. C.; Kwon, J.-D.; Nam, K.-S.; Jeong, Y.; Kang, J.-W.; Kim, C. S. Adv. Mater. 2012, 24, 4523.
(d) Qin, W.; Yu, W.; Zi, W.; Liu, X.; Yuan, T.; Yang, D.; Wang, S.; Tu, G.; Zhang, J.; Liu, F. S.; Li, C. J. Mater. Chem. A 2014, 2, 15303.
(e) Albrecht, S.; Grootoonk, B.; Neubert, S.; Roland, S.; Wördenweber, J.; Meier, M.; Schlatmann, R.; Gordijn, A.; Neher, D. Sol. Energy Mater. Sol. Cells 2014, 127, 157.

Outlines

/