Communication

Nickel-Catalyzed Cross-Coupling of gem-Difluoropropargyl Bromide with Aryl Boronic Acids

  • Xiao Yulan ,
  • Pan Qiang ,
  • Zhang Xingang
Expand
  • Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2015-01-15

  Online published: 2015-02-20

Supported by

Project supported by the National Basic Research Program of China (973 Program) (No. 2015CB931900) and the National Natural Science Foundation of China (Nos. 21425208 and 21421002).

Abstract

The gem-difluoropropargylated arenes play an important role in life and material sciences owning to the unique properties of the difluoromethylene group (CF2). The traditional method to access such a kind of fluorinated structure relies on conversion of carbonyl group with aminosulfurtrifluorides, such as DAST and Deoxofluor. However, these reactions suffer from the use of expensive and toxic fluorinated reagents and the important functional group incompatibility. Hence, it is highly desirable to develop new and efficient strategies and methods to prepare gem-difluoropropargylated arenes. As part of our ongoing interest in transition-metal-catalyzed difluoroalkylation reactions, herein, we report a nickel-catalyzed cross-coupling of gem-difluoropropargyl bromide with aryl boronic acids. The reaction uses low-cost Ni-catalyst and proceeds under mild reaction conditions with high efficiency and good functional group compatibility. It is also possible for gram-scale reaction and late stage gem-difluoropropargylation of bioactive natural product, thus providing a facile route for application in drug discovery and development. A representative procedure for nickel-catalyzed cross-coupling of gem-difluoropropargyl bromide with aryl boronic acids is as following: Phenylboronic acid 1a (1.5 equiv.), Ni(NO3)2·6H2O or NiCl2·dppe (2.5 mol%), bpy (2.5 mol%), and K2CO3 (2.0 equiv.) were subsequently added to a 25 mL of Schlenck tube. The resulting mixture was then evacuated and backfilled with Ar (3 times). gem-Difluoropropargyl bromide 2 (0.6 mmol, 1.0 equiv.) and 1,4-dioxane (4 mL) were then added. The Schlenck tube was screw capped and put into a preheated oil bath (80 ℃). After stirring for 24 h, the reaction mixture was cooled to room temperature. The yield was determined by 19F NMR before working up. If necessary, the reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography (100% Petroleum ether) to give product 3a.

Cite this article

Xiao Yulan , Pan Qiang , Zhang Xingang . Nickel-Catalyzed Cross-Coupling of gem-Difluoropropargyl Bromide with Aryl Boronic Acids[J]. Acta Chimica Sinica, 2015 , 73(5) : 383 -387 . DOI: 10.6023/A15010042

References

[1] For recent reviews, see:(a) Smart, B. E. J. Fluorine Chem.2001, 109, 3.
(b) Maienfisch, P.; Hall, R. G. Chimia 2004, 58, 93.
(c) Special issue on “Fluorine in the Life Sciences”, ChemBioChem 2004, 5, 557.
(d) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev.2008, 37, 320.
[2] Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshok, V. A.; Liu, H. Chem. Rev.2014, 114, 243.
[3] (a) Gribble, G. W. Chem. Soc. Rev. 1999, 28, 335.
(b) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
(c) O'Hagan, D.; Schaffrath, C.; Cobb, S. L.; Hamilton, J. T. G.; Murphy, C. D. Nature 2002, 416, 279.
(c) Arnaud, C. H. Chem. Eng. News 2014, 92, 34.
[4] (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev.2004, 104, 3079.
(b) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev.2011, 111, 2937.
(c) Acetylene Chemistry: Chemistry, Biology and Material Science, Eds.: Diederich, F.; Stang, P. J.; Tykwinski, R. R., Wiley-VCH, Weinheim, 2005.
[5] (a) Blackburn, C. M.; England, D. A.; Kolkmann, F. J. Chem. Soc. Chem. Commun. 1981, 930.
(b) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin Trans. 1 1984, 1119.
(c) Kitazume, T.; Kamazaki, T. Experimental Methods in Organic Fluorine Chemistry, Gordon and Breach Science, Tokyo, 1998.
(d) Yang, Y.; You, Z.; Qing, F.-L. Acta Chim. Sinica 2012, 70, 2323. (杨义, 游正伟, 卿凤翎, 化学学报, 2012, 70, 2323.)
[6] For selected reviews, see:(a) Qiu, X.-L.; Xu, X.-H.; Qing, F.-L. Tetrahedron 2010, 66, 789.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
[7] (a) Bannwarth, P.; Gree, D.; Gree, R. Tetrahedron Lett. 2010, 51, 2413.
(b) Khalaf, A.; Gree, D.; Abdallah, H.; Jaber, N.; Hachem, A.; Gree, R. Tetrahedron 2011, 67, 3881.
(c) Li, Y.; Wheeler, K. A.; Dembinski, R. Org. Biomol. Chem.2012, 10, 2395.
(d) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Proc. Natl. Acad. Sci.USA 2007, 104, 16793.
[8] (a) Xu, B.; Mashuta, M. S.; Hammond, G. B. Angew. Chem., Int. Ed.2006, 45, 7265.
(b) Xu, B.; Hammond, G. B. Chem. Eur. J.2008, 14, 10029.
(c) Mae, M.; Hong, J. A.; Hammond, G. B.; Uneyama, K. Tetrahedron Lett.2005, 46, 1787.
(d) Surmont, R.; Verniest, G.; Kimpe, N. D. Org. Lett.2009, 11, 2920;
(e) Lin, J.; Yue, X.; Huang, P.; Cui, D.; Qing, F.-L. Synthesis 2010, 267.
[9] (a) Kwok, P. -Y.; Muellner, F. W.; Chen, C.-K.; Fried, J. J. Am. Chem. Soc. 1987, 109, 3684.
(b) Liu, G.; Mori, S.; Wang, X.; Noritake, S.; Tokunaga, E.; Shibata, N. New J. Chem. 2012, 36, 1769;
(c) Xu, B.; Hammond, G. B. Angew. Chem., Int. Ed. 2005, 44, 7404.
[10] For palladium catalyzed difluoroalkylation, see:(a) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem., Int. Ed.2014, 53, 1669.
(b) Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc.2014, 136, 1230.
(c) Xiao, Y.-L.; Zhang, B.; Feng, Z.; Zhang, X. Org. Lett.2014, 16, 4822.
(d) Yu, Y.-B.; He, G.-Z.; Zhang, X. Angew. Chem., Int. Ed.2014, 53, 10457.
(e) Gu, J.-W.; Guo, W.-H.; Zhang, X. Org. Chem. Front. 2015, 2, 38.
[11] (a) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.
(b) Feng, Z.; Chen, F.; Zhang, X. Org. Lett.2012, 14, 1938.
(c) Feng, Z.; Xiao, Y.-L.; Zhang, X. Org. Chem. Front. 2014, 1, 113.
[12] Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.; Zhang, X. Angew. Chem., Int. Ed.2014, 53, 9909.
[13] For related radical inhibition experiments studies, see: Huang, X.-T.; Chen, Q.-Y. J. Org. Chem.2001, 66, 4651.
[14] For mechanistic studies of Ni-catalyzed Suzuki reactions of unactivated alkyl electrophiles, see:(a) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem. Soc.2012, 134, 5794.
(b) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc.2013, 135, 624. For early mechanistic studies of Ni-catalyzed Negishi reactions of unactivated alkyl electrophiles, see:
(c) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J. Am. Chem. Soc.2006, 128, 13175.
(d) Phapale, V. B.; Bunuel, E.; Garcia-Iglesias, M.; Cardenas, D. J. Angew. Chem., Int. Ed.2007, 46, 8790.
(e) Lin, X.; Phillips, D. L. J. Org. Chem.2008, 73, 3680. For overview of mechanistic issues regarding Ni-catalyzed cross-couplings of unactivated alkyl halides, see:
(f) Hu, X. Chem. Sci.2011, 2, 1867.

Outlines

/