Article

Preparation of a pH-Responsive Porous Materials Functionalized by Pyridine Groups via the Heck Reaction

  • Yang Wenyan ,
  • Liu Hongzhi
Expand
  • a Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100;
    b Key Laboratory of Specially Functional Polymeric Materials and Related Technology, Ministry of Education, East China University of Science and Technology, Shanghai 200237

Received date: 2015-01-19

  Online published: 2015-03-04

Supported by

Project supported by the National Natural Science Foundation of China (No. 21274081).

Abstract

A novel covalent-linked pH-responsive porous polymer (CPP) was prepared successfully using the tetrahedron tetrakis(4-vinylbenzyl)silane and brominated distyrylpyridine (Br-DSP) as the building blocks via the Heck coupling reaction. The structure of the resulting material was characterized by FTIR, solid-state 29Si MAS NMR, 13C CP/MAS NMR and elemental analysis. The material possessed good porosity, the porosity parameters were evaluated by nitrogen adsorption and desorption measurement, thereinto, pore-size distribution (PSD) was characterized by nonlocal density functional theory (NL-DFT). The Brunauer-Emmett-Tellerspecific surface area of CPP was 467 m2·g-1 and total pore volume of 0.41 cm3·g-1 by t-plot method, the material also exhibited good CO2 uptake of 2.96 wt% at 273 K/760 mmHg. The powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM) measurements were used to investigate the porous polymer. CPP exhibited high thermal stability with decomposition temperature at 462 ℃ (10 wt%) by thermogravimetric analysis (TGA). By the introduction of the conjugated structures of distyrylpyridine groups, the porous polymer showed luminescence with the maximum emission at ca. 526 nm in the solid state. Additionally, CPP exhibited an excellent pH-responsive property due to the protonated nitrogen centers of pyridine groups in the porous structure, a linear relation was established between the maximum luminescent emission wavelengths (λem) of the porous polymer in buffer solutions and the corresponding pH values in the pH range from 1.00 to 4.50, the correlation coefficient of the straight line was 0.992. Therefore, this porous material can be utilized as an promising fluorescent probe in the rapid test systems.

Cite this article

Yang Wenyan , Liu Hongzhi . Preparation of a pH-Responsive Porous Materials Functionalized by Pyridine Groups via the Heck Reaction[J]. Acta Chimica Sinica, 2015 , 73(6) : 623 -628 . DOI: 10.6023/A15010054

References

[1] Morris, R. E.; Wheatley, P. S. Angew. Chem., Int. Ed. 2008, 47, 4699.
[2] McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
[3] Wu, D.; Xu, F.; Sun, R.; Fu, R.; He, H.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959.
[4] Soler-Illia, G.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev. 2002, 102, 4093.
[5] (a) Patra, A.; Scherf, U. Chem. Eur. J. 2012, 18, 10074.
(b) Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
[6] (a) Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
(b) Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. L. J. Am. Chem. Soc. 2010, 132, 6742.
(c) Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.
(d) Liu, X. M.; Xu, Y. H.; Jiang, D. L. J. Am. Chem. Soc. 2012, 134, 8738.
(e) Wang, D.; Li, L.; Yang, W.; Zuo, Y.; Feng, S.; Liu, H. RSC Adv. 2014, 4, 59877.
[7] (a) Jiang, X.; Yin, J.; Murakami, Y.; Kaji, M. J. Photopolym. Sci. Technol. 2009, 22, 351.
(b) Pivovarenko, V. G.; Grygorovych, A. V.; Valuk, V. F.; Doroshenko, A. O. J. Fluoresc. 2003, 13, 479.
(c) Yang, W.; Jiang, X.; Liu, H. RSC Adv. 2015, 5, 12800.
(d) Grygorovych, O. V.; Moskalenko, S. M.; Marekha, B. A.; Doroshenko, A. O. J. Fluoresc. 2010, 20, 115.
[8] (a) Yuan, D.; Lu, W.; Zhao, D.; Zhou, H. C. Adv. Mater. 2011, 23, 3723.
(b) Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I. Macromolecules 2010, 43, 8531.
(c) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem., Int. Ed. 2009, 48, 9457.
[9] (a) Wang, D.; Yang, W.; Li, L.; Zhao, X.; Feng, S.; Liu, H. J. Mater. Chem. 2013, 1, 13549.
(b) Yang, W.; Wang, D.; Li, L.; Liu, H. Eur. J. Inorg. Chem. 2014, 2976.
(c) Sengupta, P.; Zhang, H.; Son, D. Y. Inorg. Chem. 2004, 43, 1828.
[10] (a) Wang, D.; Xue, L.; Li, L.; Deng, B.; Feng, S.; Liu, H.; Zhao, X. Macromol. Rapid Commun. 2013, 34, 861.
(b) Wu, Y.; Wang, D.; Li, L.; Yang, W.; Feng, S.; Liu, H. J. Mater. Chem. 2014, 2, 2160.
[11] (a) Zhao, Y.; Cheng, Q.; Zhou, D.; Wang, T.; Han, B. J. Mater. Chem. 2012, 22, 11509.
(b) Feng, L.; Chen, Q.; Zhu, J.; Liu, D.; Zhao, Y.; Han, B. Polym. Chem. 2014, 5, 3081.
(c) Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C.; Han, B. J. Am. Chem. Soc. 2012, 134, 6084.
(d) Wang, W.; Yan, Z.; Yuan, Y.; Sun, F.; Zhao, M.; Ren, H.; Zhun, G. Acta Chim. Sinica 2014, 72, 557. (王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山, 化学学报, 2014, 72, 557.)
[12] (a) Kobayashi, F.; Ikeura, H.; Odake, S.; Tanimoto, S.; Hayata, Y. LWT-Food Sci. Technol. 2012, 48, 330.
(b) Chen, Y.-C.; Xie, R.; Chu, L.-Y. J. Membr. Sci. 2013, 442, 206.
[13] Zhang, H.; Bai, S.; Sun, J.; Han, J.; Guo, Y. Mater. Res. Bull. 2014, 53, 266.
[14] (a) Lindqvist, J.; Nyström, D.; Östmark, E.; Antoni, P.; Carlmark, A.; Johansson, M.; Hult, A.; Malmström, E. Biomacromolecules 2008, 9, 2139.
(b) Liu, S.; Wang, L.; Liu, B.; Song, Y. Polymer 2013, 54, 3065.
[15] Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Nano Lett. 2009, 9, 2788.

Outlines

/